
WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs
JIAHUI SUN, Hefei University of Technology, China
WENMING WU∗, Hefei University of Technology, China
LIGANG LIU, University of Science and Technology of China, China
WENJIE MIN, Hefei University of Technology, China
GAOFENG ZHANG, Hefei University of Technology, China
LIPING ZHENG∗, Hefei University of Technology, China

Living room

Bedroom

Kitchen

Bathroom

Balcony

Storage

Fig. 1. We propose to synthesize floorplans by learning to generate wall graphs using deep neural networks. Top row: floorplans generated by our method
with various input boundaries. Bottom row: our method generates the graph with wall junctions (in orange) as nodes and wall segments (in blue) as edges in
an iterative manner for the example outlined in the dotted box. Room labels are represented in different colors, as shown in the upper-right.

Floorplan generation has drawn widespread interest in the community. Re-
cent learning-based methods for generating realistic floorplans have made
significant progress while a complex heuristic post-processing is still neces-
sary to obtain desired results. In this paper, we propose a novel wall-oriented
method, called WallPlan, for automatically and efficiently generating plausi-
ble floorplans from various design constraints. We pioneer the representation
of the floorplan as a wall graph with room labels and consider the floorplan
generation as a graph generation. Given the boundary as input, we first
initialize the boundary with windows predicted by WinNet. Then a graph
generation network GraphNet and semantics prediction network LabelNet
are coupled to generate the wall graph progressively by imitating graph tra-
versal. WallPlan can be applied for practical architectural designs, especially
the wall-based constraints. We conduct ablation experiments, qualitative
evaluations, quantitative comparisons, and perceptual studies to evaluate our
method’s feasibility, efficacy, and versatility. Intensive experiments demon-
strate our method requires no post-processing, producing higher quality
floorplans than state-of-the-art techniques.

∗The corresponding authors

Authors’ addresses: Jiahui Sun, Hefei University of Technology, China, jeffrey@mail.
hfut.edu.cn; Wenming Wu, Hefei University of Technology, China, wwming@hfut.edu.
cn; Ligang Liu, University of Science and Technology of China, China, lgliu@ustc.edu.
cn; Wenjie Min, Hefei University of Technology, China, 2021171224@mail.hfut.edu.cn;
Gaofeng Zhang, Hefei University of Technology, China, g.zhang@hfut.edu.cn; Liping
Zheng, Hefei University of Technology, China, zhenglp@hfut.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART1 $15.00
https://doi.org/10.1145/3528223.3530135

CCS Concepts: • Computing methodologies→ Shape modeling; Neural
networks; Probabilistic reasoning.

Additional Key Words and Phrases: Floorplan generation, graph traversal,
deep learning

ACM Reference Format:
Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Lip-
ing Zheng. 2022. WallPlan: Synthesizing Floorplans by Learning to Gener-
ate Wall Graphs. ACM Trans. Graph. 41, 4, Article 1 (July 2022), 14 pages.
https://doi.org/10.1145/3528223.3530135

1 INTRODUCTION
Floor and building plans are fundamental to architectural design
and indoor scene modeling. Automated generation of vectorized
floorplans from design constraints (e.g., the boundary) has drawn
recent interests in the community [Chaillou 2020; Laignel et al. 2021;
Liu et al. 2013; Merrell et al. 2010; Wang et al. 2021; Wu et al. 2018].

Recent techniques [Hu et al. 2020; Nauata et al. 2021; Para et al.
2021; Wu et al. 2019] for generating realistic floorplans have made
significant breakthroughs due to the surge of deep learning tech-
niques. These methods either predict labels of the floorplan im-
age at the pixel level [Chaillou 2020; Nauata et al. 2020, 2021; Wu
et al. 2019], or bounding boxes of the floorplan rooms at the box
level [Chen et al. 2020; Hu et al. 2020; Para et al. 2021]. They can be
considered element-oriented methods as they actually generate dif-

https://doi.org/10.1145/3528223.3530135
https://doi.org/10.1145/3528223.3530135

1:2 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

designed with heuristic metrics and parameters, resulting in unsta-
ble results with tedious parameter tuning or problematic numerical
computation. Moreover, these element-oriented methods are unable
to meet various design constraints (e.g., the loading-bearing wall
constraint) conducted on walls in practical floorplannings.

Unlike existing element-oriented methods, we propose an wall-
oriented method, WallPlan, for generating wall plans, so as to obtain
vectorized floorplans. Given the boundary as well as other design
constraints, we aim to generate floorplans by placing walls. Our
key idea is to consider the wall plan as a graph with wall junctions
as nodes and wall segments as edges and its generation as a graph
generation. To achieve it, we borrow the idea of graph traversal
and design a network to generate the wall graph progressively by
imitating graph traversal. Specifically, we design a graph generation
network, called GraphNet, to predict the wall segments progres-
sively in the order of graph traversal scheme. However, this can
only produce floorplan geometry, learning the wall plan only is not
enough to construct a complete floorplan due to the lack of room
semantics. Thus we further design another network, called Label-
Net, to predict room labels simultanously. GraphNet and LabelNet
are well designed in a coupled manner so that both networks assist
with each other during the learning procedure. The two networks
are interlaced to generate both the local geometry and the global
semantics. Therefore, the finally learned wall graph as well as room
labels are output as the vectorized floorplan result. Furthermore, as
our method WallPlan is actually a wall-oriented method, it is rather
natural to realize various wall constraints.

WallPlan can be applied to various constrained floorplan designs,
such as the bubble diagram and loading-bearing wall constraint. We
conduct ablation experiments, qualitative evaluations, quantitative
comparisons, and perceptual studies to evaluate it. Intensive experi-
ments demonstrate WallPlan can produce higher quality floorplans
than state-of-the-art techniques. We contribute the following:
• a novel wall-oriented method to generate floorplans by rep-

resenting the floorplan as a wall graph and considering its
generation as graph generation.
• a coupled geometry-semantics network that enables wall

graph generation under various design constraints in an iter-
ative manner of graph traversal.

WallPlan is able to automatically and efficiently generate plausible
floorplans, and realizes abundant constrained floorplan designs,
some of which are hard to achieve using state-of-the-art techniques.
Fig. 1 shows several generated floorplans using our method. Our key
contribution is to generate floorplans by synthesizing wall graphs,
making a great improvement of generation quality over previous
works. Code for this paper is at www.dummy.url.

2 RELATED WORK

2.1 Space planning in computer graphics
Our work relates to the research of space planning, which is to study
the reasonable arrangement of objects. Space planning is of great
importance in many practical applications, such as architectural
design, computer games, and virtual reality. Dozens of research
on space planning have accumulated a large number of technical
works, covering a variety of topics. Related works includes VLSI

(a) Labeled pixels (b) Room boxes

Fig. 2. Existing element-oriented methods. (a) The floorplan is generated
by the pixel level method. It is necessary to transform a raster image into a
vectorized floorplan. (b) The floorplan is generated by the box level method.
A heuristic post-processing is always required to construct a floorplan with
the room box aligned and labeled.

design [Chen et al. 2010; Sechen 2012; Singha et al. 2012], graphic
design [Cao et al. 2014; O’Donovan et al. 2014; Pang et al. 2016; Yang
et al. 2016; Zheng et al. 2019], urban planning [Peng et al. 2016, 2014;
Vanegas et al. 2012; Yang et al. 2013], facade synthesis of residen-
tial buildings [Fan and Wonka 2016; Yeh et al. 2013], indoor scene
synthesis [Li et al. 2019; Ritchie et al. 2019; Wang et al. 2019, 2018;
Zhang et al. 2020; Zhou et al. 2019], game level design [Hendrikx
et al. 2013; Ma et al. 2014; Yeh et al. 2012], layout design of composite
buildings [Bao et al. 2013; Feng et al. 2016], etc. In this paper, we aim
to generate floorplans, a blueprint of the room arrangement inside
the building, which is also a classical problem in space planning.

2.2 Optimization-based floorplan generation
Floorplan generation typically takes a set of manually-defined con-
straints as input, and proposes a reasonable space allocation, provid-
ing room categories, locations, and boundaries. Earlier efforts [Arvin
and House 2002; Medjdoub and Yannou 2000; Michalek et al. 2002;
Michalek and Papalambros 2002] tackle this task using procedural or
optimization methods. Given a set of high-level requirements, [Mer-
rell et al. 2010] first learn room attributes based on a Bayesian
network to generate architectural programs, then the detailed floor-
plan can be obtained through stochastic optimization. Following up
this work, [Rosser et al. 2017] introduce a data-driven method to
estimate room metrics, which can be used to construct appropriate
spatial planning. [Liu et al. 2013] propose an interactive floorplan
design method combining design constraints, user preferences, and
manufacturing considerations to optimize the interior layout for
pre-cast concrete-based buildings. [Wu et al. 2018] make full use of
mixed integer quadratic programming to mathematically formulate
the floorplan generation problem from high-level constraints and
propose a hierarchical framework to generate floorplans in a coarse-
to-fine manner. Recently, [Wang and Zhang 2020] present a frame-
work to generate floorplans based on room adjacencies. [Laignel
et al. 2021] introduce an optimization method to generate floorplans
upon the apartment envelope and room specifications by gridding
the space. [Shekhawat et al. 2021] propose to construct dimensioned
floorplans from an adjacency graph and dimensional constraints
with the graph-theoretical and optimization techniques.

However, these methods require careful constraint settings. Too
few constraints may lead to unsatisfactory results, while too many
could cause constraint contradictions and lead to no feasible solution.
Furthermore, some constraints are difficult to model mathematically.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs • 1:3

`-`J`W`J`O`H`´`S`P`P`N`#`F`E`S`P`P`N

(a) (b) (c)

GraphNet LabelNet

(d) Visualized floorplan

WinNet

Living room

Bedroom

Kitchen

Bathroom

Balcony

Storage

Fig. 3. Overview of WallPlan. (a) The building boundary, as well as the front door (in bright yellow), is given as input of WallPlan. (b) The boundary is initialized
with windows (in dark yellow) predicted by WinNet. (c) WallPlan generates both the wall graph and floorplan semantics by a coupled structure of GraphNet
and LabelNet from the input boundary and windows. (d) The generated wall graph and floorplan semantics are used to construct a wall graph with room
labels as output of WallPlan. The vectorized floorplan can be directly obtained from the wall graph. Note that the drawing of windows and interior doors
which are generated using a heuristic method is only used for visualization, also adopted by other figures in this paper.

GraphNet

LabelNet

Fig. 4. Architecture of WallPlan. Given the boundary with windows as input, WallPlan generates both the wall graph and floorplan semantics progressively by
imitating graph traversal, then a wall graph with room labels can be obtained. When no nodes can be generated, the generative process is terminated.

2.3 Learning-based floorplan generation
Another idea is to implicitly learn design principles from existing
data, resulting in more efficient floorplan generation. Most of the
focus has shifted to applying deep learning to floorplan generation
in recent years. Most of the existing learning-based methods are
element-oriented: pixel level or box level.

Pixel level. Given the building boundary as input, [Wu et al. 2019]
present a two-stage convolutional neural network for automati-
cally generating floorplans by locating rooms first and then locating
walls. The generative adversarial network has also been explored
in floorplan generation. [Chaillou 2020] proposes a series of deep
networks to enable the generation of building footprints, floorplans,
and even furniture placements. However, vectorized results cannot
be obtained conveniently due to the representation of pixels. Trans-
forming a raster floorplan image into the vector format is a necessary
step to get visually plausible floorplans. Another limitation is that
the user has little control over the generative process. [Nauata et al.
2020] present a generative model for floorplan generation through
a generative adversarial network named House-GAN. Taking a bub-
ble diagram as input, House-GAN can generate diverse floorplans
to fit the diagram. As an extension of House-GAN, their following
work House-GAN++ [Nauata et al. 2021] is a straightforward inte-
gration of a relational GAN [Nauata et al. 2020] and a conditional
GAN [Pathak et al. 2016]. House-GAN++ has improved the quality

of results compared to House-GAN, while still owning the major
drawback of House-GAN, that is, floorplans are represented in raster
images, further post-processing is still needed.

Box level. [Hu et al. 2020] achieve the conversion of layout graphs
to floorplans by a deep network framework called Graph2Plan and
allow users to control floorplan generation by imposing design con-
straints on layout graphs. However, this method is limited by the
dataset and lacks generality since the layout graph is obtained by
heuristic retrieval according to the similarity of boundaries. Mean-
while, they can only obtain discrete room boxes, post-processing is
needed to get desired results. [Chen et al. 2020] focus on producing
floorplans from language descriptions that describe house details
based on graph convolutional network and generative adversarial
network. Just similar to [Hu et al. 2020], further post-processing is
also needed. More recently, [Wang et al. 2021] present a learning-
based method to generate 3D floorplans by piecing together existing
3D rooms. [Para et al. 2021] propose a hybrid method composed of
the generative model and optimization method to generate layouts,
which first generates a layout graph with layout elements as nodes
and constraints between layout elements as edges, and then the
final layout is obtained by linear programming.

In summary, to produce good-looking floorplans, existing learning-
based methods require a heuristic post-processing. In contrast, we
aim to synthesize floorplans by learning to generate wall graphs,

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:4 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

which can greatly reduce the complexity of post-processing. In
addition, existing learning-based methods cannot achieve floor-
plan design based on walls, such as the loading-bearing wall con-
straint. WallPlan can realize abundant applications including floor-
plan design based on both the global bubble diagram constraint and
the local loading-bearing wall constraint.

3 OVERVIEW

{ }
Bedroom

Living room

𝐿𝑘 :

𝑣𝑖 𝑣 𝑗

(𝑣𝑖 , 𝑣 𝑗)

𝑅𝑙

Representation. We represent the floor-
plan as a wall graph of the form G =

(V, E) with a node setV = {𝑣𝑘 }𝑀
𝑘=0 in-

dicating wall junctions and a edge set
E = {(𝑣𝑖 , 𝑣 𝑗) | 𝑣𝑖 , 𝑣 𝑗 ∈ V} indicating
wall segments (right inset). The wall junc-
tion can be represented as 𝑣𝑘 = (pk, 𝐿𝑘)
where pk is the position of 𝑣𝑘 , and 𝐿𝑘 is
a label list of rooms that contain 𝑣𝑘 . A
shortest cycle forms the room 𝑅𝑙 , which is the single region sur-
rounded by nodes. Once adopting a wall graph to represent floor-
plan, the vectorized floorplan can be directly obtained from the wall
graph, and thus a natural idea is to transform floorplan generation
to wall graph generation.

Dataset. We extract wall graphs from the RPLAN dataset [Wu
et al. 2019], which contains more than 80K real-world floorplans
with dense annotation from residential buildings. Specifically, we
first extract wall junctions in the floorplan image, then find the adja-
cencies between the extracted junctions according to wall segments.
Finally, room labels are obtained and added to the graph nodes. In
turn, given a wall graph with room labels, rooms in the floorplan
can be determined by finding all shortest cycles in the wall graph,
and the common room label of all nodes on the cycle is used as the
label of the room. Since we use image-based convolutional neural
networks as the basic network architecture of our model, we convert
the wall graph into a 120 × 120 image with fixed wall thickness (3
pixels in our experiments) during training.

Problem & Challenge. Given a building’s outer boundary (the
front door included) and other design constraints as input (Fig. 3a),
our goal is to generate a plausible wall graph (Fig. 3d), then a vec-
torized floorplan can be obtained directly. There are two technical
challenges. Firstly, given the boundary as well as other constraints,it
is challenging to design deep learning networks to realize wall graph
generation. Secondly, we also need room labels to construct a com-
plete floorplan. Wall graph generation and room label prediction
relate to each other and influence each other. The independent gen-
eration of the wall graph and room labels can not taking advantage
of this connection apparently, while it is non-trivial to combine the
generation of both.

Methodology. We enable wall graph generation by imitating graph
traversal. WallPlan is shown in Fig. 3 and detailed generative process
is given in Fig. 4. Given the boundary as well as other constraints as
input, we first initialize the boundary with windows which can be
predicted by WinNet. Starting from one node of the boundary, we
propose a graph generation network GraphNet to iteratively predict
new nodes and edges in a manner of graph traversal. The wall

(a) (b) (c)

WinNet WinNet

Fig. 5. Window prediction. (a) Given the boundary, (b) we first predict the
living room window, then (c) the windows of other type rooms are predicted
based on the boundary and the predicted living room window.

graph is progressively generated constrained on the boundary as
well as other design constraints by feeding the inputs to GraphNet.
To obtain room labels, we propose a semantics prediction network
LabelNet to obtain the global floorplan semantics from the generated
wall graph. GraphNet and LabelNet are coupled to generate a wall
graph with room labels progressively. In each step, the generated
wall graph by GraphNet will be used for room label prediction by
LabelNet, and the result of LabelNet will assist GraphNet, in turn.
This repeats until a complete wall graph can be obtained.

4 METHOD
WallPlan is mainly composed of two modules: wall graph generation
(Section 4.2) and room label prediction (Section 4.3). We design a
coupled structure of these two modules (Section 4.4). Before that,
we propose a window-first strategy (Section 4.1) to initialize the
generative process. For the convenience of description, we only
consider the boundary as input to introduce our method, more
input constraints are discussed in Section 5.

4.1 Initialization with windows
Window prediciton. We propose a window-first strategy that pre-

dicts windows on the boundary to initialize the generative process
based on one key observation. The window position indicates the
approximate location of the room, and the number of windows is
often positively correlated with the number of rooms. Therefore
windows can provide a weak constraint on floorplan design.

The window-first strategy brings two benefits. On one hand, win-
dows can serve as a soft constraint to limit the solution space of
floorplan design and thus facilitate us to obtain a locally optimal
solution, improving the overall rationality of generated floorplans.
On the other hand, the distribution of windows can guide floorplan
generation, and the window-first strategy also provides a degree
of control over the generative process. To set windows, we adopt
a simple two-step prediction shown in Fig. 5. We first predict the
living room window given the boundary, then the windows of other
type rooms are predicted based on the boundary and the predicted
living room window. The user is also allowed to adjust the windows
to achieve the personalized floorplan design. We only consider two
types of windows: the larger window assigned to the living room,
and the smaller window to other type rooms, as some rooms usu-
ally have the same window specifications. Experiment results have
shown that only two types of windows are sufficient for WallPlan.

WinNet. Windows are determined through a prediction network
called WinNet. The original RPLAN dataset does not include win-
dows. To build a training dataset, we directly use some empirical

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs • 1:5

rules proposed by [Wu et al. 2019] to create windows for floorplans
in RPLAN dataset. Setting windows based on the heuristics is pretty
common in previous work [Hu et al. 2020; Wu et al. 2019] as the
setting rules are relatively straightforward and simple. Therefore, it
is available for our window prediction task, although windows are
synthetic. WinNet aims at a multi-channel image as input and a se-
mantic segmentation of windows as output. For the prediction of the
living room window, the input includes the following information
at each pixel, which defaults to 0:
• Inside mask: taking a value of 1 for the interior.
• Boundary mask: taking a value of 1 for the exterior walls.
• Entrance mask: taking a value of 1 for the front door.

For window prediction of other type rooms, the input to WinNet
includes an additional channel living room mask taking a value of
1 for the living room window. We use a 13 × 5 square to represent
the living room window and a 7 × 5 square for the window of other
type rooms. We use a modified D-LinkNet [Zhou et al. 2018] as
the network architecture. The original D-LinkNet is modified to
use 120 × 120 multi-channel images as input. In the remainder of
Section 4, the boundary we refer to contains windows by default.
Windows are represented as a squared mask.

4.2 Graph generation
Traversal generation. Given the boundary which can be repre-

sented as a polygon B =

{
𝑣𝑘
𝐵

}𝑁

𝑘=0
, our goal is to generate a wall

graph G = (V, E) constrained on B. We refer to Breadth-First
Search (BFS) of graph traversal. The traditional BFS algorithm starts
with a source node and adds unvisited neighboring nodes of the
source to a frontier queue. The nodes in the frontier queue are
marked as visited and will be used for expansion in the subsequent
traversal. In this way, the algorithm is executed repeatedly until no
node remains unvisited. We borrow the idea of graph traversal and
enable wall graph generation by imitating graph traversal. Start-
ing from one node, the wall graph can be generated by iteratively
predicting new nodes and edges based on the previously generated
wall graph. Supposing that G𝑡 = (V𝑡 , E𝑡) is the wall graph in the
𝑡-iteration, the new nodes ΔV𝑡+1 and edges ΔE𝑡+1 of the wall graph
G𝑡+1 can be predicted from the wall graph G𝑡 and the boundary B.
The joint distribution of G𝑇 is then, by the chain rule:

p (G𝑇 | B) = p (V𝑇 , E𝑇 | B) =

𝑇∏
𝑡=0

p (ΔV𝑡+1,ΔE𝑡+1 | G𝑡 ,B) (1)

G𝑡+1 = G𝑡 ∪ (ΔV𝑡+1,ΔE𝑡+1) (2)
G0 only contains the starting point and𝑇 is the number of iterations.

To this end, we develop an algorithm for wall graph generation
in Algorithm 1. Without loss of generality, we first choose the top-
left node 𝑣

top-left
𝐵

obtained by pre-sorting of the boundary B as the
starting point. Then an iterative pipeline is following, as shown in
Fig. 6. In each step, GraphNet is used to produce the candidates
of new nodes and edges by taking the boundary B, wall graph
G𝑡 , and source nodes ΔV𝑡 as input. It is worth noting that not all
candidate nodes and edges can be added to the wall graph G. We
use “if...end” (Line 10-13 and 16-18 in Algorithm 1) to avoid adding
wrong nodes and edges predicted by our method. Only if there

exists an edge candidate between a node candidate and the source
nodes, both the candidates of nodes and edges are added into the
wall graph as the new nodes and edges. Meanwhile, we add an edge
candidate into the wall graph if the edge candidate is built between
two new nodes. This iterative process is terminated until GraphNet
can no longer predict any new nodes. Note that we generate the
wall graph from scratch based on the given boundary. To meet the
boundary constraint, the generated wall graph G is trained to cover
the boundary B during the training process.

ALGORITHM 1: Graph generation

Input: B: the boundary; 𝑣
top-left
𝐵

: the top-left node of the boundary;
𝑡 : the number of iteration
Output: G: the wall graph constrained on B

1 𝑡 = 0;

2 G𝑡 =

({
𝑣

top-left
𝐵

}
, ∅

)
; /* Wall graph in the 𝑡-iteration */

3 ΔV𝑡 =

{
𝑣

top-left
𝐵

}
; /* New nodes (source nodes) of G𝑡 */

4 ΔE𝑡 = ∅; /* New edges of G𝑡 */

5 while ΔV𝑡 ≠ ∅ do
6 ΔVc

𝑡+1, ΔEc
𝑡+1 = GraphNet(B, G𝑡 ,ΔV𝑡) ; /* Generate the

candidates of new nodes and edges of G𝑡+1 */

7 ΔV𝑡+1 = ∅;
8 ΔE𝑡+1 = ∅;
9 for 𝑣c ∈ ΔVc

𝑡+1, 𝑣𝑖 ∈ ΔV𝑡 do /* Determine if each

candidate of nodes and edges is added to G𝑡+1 */
10 if edge

(
𝑣c, 𝑣𝑖

)
in ΔEc

𝑡+1 then
11 Add 𝑣c into ΔV𝑡+1;
12 Add

(
𝑣c, 𝑣𝑖

)
into ΔE𝑡+1;

13 end
14 end
15 for 𝑣i, 𝑣j ∈ ΔV𝑡+1 do /* Determine if the edge candidate

exists between two new nodes in G𝑡+1 */
16 if edge

(
𝑣i, 𝑣j) in ΔEc

𝑡+1 then
17 Add

(
𝑣i, 𝑣j) into ΔE𝑡+1;

18 end
19 end
20 G𝑡+1 = G𝑡 ∪ (ΔV𝑡+1,ΔE𝑡+1) ; /* Update G𝑡+1 */

21 𝑡 = 𝑡 + 1;
22 end
23 G = G𝑡 ;
24 return G;

GraphNet. We now introduce the core network GraphNet. To
build the training dataset for GraphNet, we perform Breadth-First
Search on graphs in the dataset and save the intermediate results
during the graph traversal as the partial wall graphs which are used
to train GraphNet. The input for GraphNet is also a multi-channel
image, similar to WinNet. Except for the channels used in WinNet,
we add several new channels which default to 0:
• Window mask: taking a value of 1 for the living room window

and 2 for other windows.
• Source node mask: taking a value of 2 for the source nodes

and 1 for other nodes. We use a small square (3 × 3) centered
on the node to represent it.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:6 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

Node

Edge

GraphNet

Fig. 6. A step of the wall graph generation. Given the boundary and wall
graph, GraphNet outputs the semantic segmentation of the new nodes and
edges, and we further extract new nodes and edges to construct a new wall
graph. Please refer to the text for more details.

• Wall graph mask: taking a value of 1 for edges in the wall
graph.

GraphNet outputs a semantic segmentation of the new nodes and
edges with three labels: Node, Wall, and Nothing, as shown in Fig. 6.
To determine the candidates of new nodes, we only need to search
for predicted nodes in the top, bottom, left, and right of the source
node due to the regularity of the wall graph. We determine the
candidates of new edges by judging if there is a certain density of
pixels belonging to new edges in the output segmentation. In other
words, the edge exists if there are a certain number of edge pixels
between two nodes in the local operation of each iteration. The
higher the pixel density, the more confident the existence of edges.
Once the candidates of new nodes and edges are determined, we
add new nodes and edges into the wall graph using the algorithm
of graph generation in Algorithm 1. Similar to WinNet, we use a
modified D-LinkNet as the network architecture of GraphNet. The
original application of D-LinkNet is proposed for road extraction,
and we think D-LinkNet is beneficial for our task in view of the
similarity between road extraction and graph generation as the road
network can also be considered as a graph.

Discussions. Our method adopts the image-based methodology,
like previous techniques [Chaillou 2020; Nauata et al. 2020, 2021;
Wu et al. 2019], to learn the pixel semantics. However, previous
methods need a post-processing optimization to generate the vec-
torized floorplan. Instead, we achieve this by performing operations
in each iteration. Actually, this is equivalent to decomposing the
complex post-processing optimization into a series of simpler lo-
cal operations, achieving better and faster generation. We do not
completely eliminate the post-processing brought by image-based
generation, but greatly reduce the complexity of post-processing.

4.3 Room label prediction
LabelNet. We need to assign room labels for each node in the

generated wall graph. Therefore, we propose a semantics prediction
network called LabelNet to obtain the global floorplan semantics
from the generated wall graph (Fig. 7). We determine the room label
for each node of the wall graph based on the predicted floorplan
semantics. Note that the input wall graph to LabelNet is not nec-
essarily the complete wall graph. Similar to WinNet, the input to
LabelNet is also a multi-channel image. Besides of the channels used
in WinNet, we add several additional channels which default to 0:

LabelNet

LabelNet

Fig. 7. Given a wall graph (not necessarily the complete wall graph as shown
in the top row) and the boundary, we use LabelNet to predict floorplan
semantics, so as to obtain room labels.

• Window mask: taking a value of 1 for the living room window
and 2 for other windows.
• Wall graph mask: taking a value of 1 for edges in the wall

graph.
The output of LabelNet is a semantic segmentation with room

labels. To determine room labels for each node of the wall graph,
we first find all the shortest cycles in the wall graph, that is, the
room. For each room, we choose the label of the pixel on the room
center as the room label. At the same time, we assign the room
label to the nodes that enclose this room. Since LabelNet performs
a semantic segmentation task, we use a modified D-LinkNet as the
network architecture similar to WinNet and we train the network
using pixel-wise cross-entropy loss. D-LinkNet performs better in
the semantic segmentation of multi-scale objects.

4.4 Coupled geometry-semantics generation
Coupled generation. So far, we have proposed two modules to

separately generate the wall graph and room labels. In the following,
we do not simply chain these two modules together to construct
a wall graph with room labels. What we want is to deeply couple
the wall graph generation and room label prediction to improve
the overall quality of the wall graph. In fact, the wall graph and
room labels relate to each other, influence each other, and promote
each other. Particularly, the input wall graph to LabelNet is not
necessarily the complete graph (Fig. 7). Providing the partial wall
graph, LabelNet is also able to predict the global floorplan semantics.
The global floorplan semantics obtained from the wall graph can
provide global guidance for GraphNet and improve the quality of
the wall graph generated in the next step. In one word, providing
the global semantics enables GraphNet to consider globally and
produce a more reasonable space allocation. To this end, we embed
the room label prediction module into the wall graph generation
module and design a coupled structure in Fig. 4. The wall graph
generated by GraphNet will be used for room label prediction, and
the result of the LabelNet will, in turn, assist wall graph generation.
In this way, the room label prediction and wall graph generation
are coupled to generate a wall graph with room labels.

Coupled structure. The architecture of the coupled structure is
shown in Fig. 4, mainly composed of two sub-networks: GraphNet

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs • 1:7

(a) (b) (c) (d) (e)

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 8. Constrained floorplan generation. Top row: various design con-
straints applied to the same boundary. Middle row: output wall graphs.
Bottom row: floorplan visualization of wall graphs. (a) Only the input bound-
ary. (b) Window constraint. (c) Load-bearing wall constraint (black dots and
line segments). (d) Bubble diagram constraint (represented as the layout
graph). (e) Hybrid-constraint. The overall structure of the floorplan changes
significantly with different constraints.

and LabelNet. The boundary B is the initial input. Given a wall
graph G𝑡 and the input boundary B, LabelNet is used to predict the
global floorplan semantics S𝑡 :

S𝑡 ← LabelNet (G𝑡 ,B) (3)
Then GraphNet is used to produce a new wall graph G𝑡+1 using the
algorithm of graph generation in Algorithm 1 from the wall graph
G𝑡 , boundary B as well as the floorplan semantics S𝑡 :

G𝑡+1 ← GraphNet (G𝑡 ,B,S𝑡) (4)
This can be executed repeatedly until a complete wall graph can be
obtained. The network architectures of these two sub-networks are
consistent with what was described before, except that the input of
GraphNet will be added extra channels of the floorplan semantics.

5 IMPLEMENTATION
In this section, the detailed implementation of more design con-
straints and networks is given.

5.1 Constrained floorplan generation
Window constraint. Given the boundary as the only input, we can

generate floorplans, which is the basic application of our method, as
shown in Fig. 8a. In WallPlan, we use WinNet to predict windows for
the input boundary. Windows on the boundary have a direct impact
on the generated floorplan. Therefore, a certain degree of control
over the floorplan generation can be enabled by setting desired
windows, as shown in Fig. 8b. So simply specifying the windows by
the user, various floorplans can be generated (Fig. 13).

Load-bearing wall constraint. Destruction of the load-bearing
walls will affect the stability of the entire building. Therefore the
loading-bearing walls are often preset. State-of-the-art methods [Chen
et al. 2020; Hu et al. 2020; Nauata et al. 2020, 2021; Wu et al. 2019]

cannot conveniently solve the loading-bearing wall constraint, while
it is a straightforward application of our method, as shown in Fig. 8c.
Given the boundary B as well as the loading-bearing wallsW, we
define a wall graph generation problem constrained on B andW:

p (G𝑇 | B,W) =

𝑇∏
𝑡=0

p (ΔV𝑡+1,ΔE𝑡+1 | G𝑡 ,B,W) (5)

In this way, we can generate wall graphs by feeding the encoded
inputs of the boundary and loading-bearing walls to WallPlan. There
are two kinds of loading-bearing walls: loading-bearing columns
(represented as points) and walls (represented as line segments).
The generated wall graphs need to cover not only the boundary but
also the loading-bearing columns and walls. In the implementation,
we only need to add the loading-bearing wall constraint into the
input of WallPlan without modifying the network architecture, by
adding an extra loading-bearing wall mask taking a value of 1 for the
loading-bearing columns and walls into the multi-channel input.

Bubble diagram constraint. The bubble diagram uses nodes to rep-
resent rooms and connections to indicate adjacencies between two
rooms. Bubble diagrams can provide global guidance for floorplan
generation and greatly limit the solution space of floorplans, which
can serve as a flexible control tool for floorplan generation. It is
worth mentioning that the bubble diagram includs spatial locations,
similar to Graph2Plan [Hu et al. 2020]. Given the boundary B as
well as the bubble diagram D, we define a wall graph generation
problem constrained on B and D:

p (G𝑇 | B,D) =

𝑇∏
𝑡=0

p (ΔV𝑡+1,ΔE𝑡+1 | G𝑡 ,B,D) (6)

Adding the bubble diagram into the input of WallPlan for encod-
ing, WallPlan can convert a diagram into a floorplan that fulfills both
the bubble diagram and boundary (Fig. 8d). In this way, WallPlan
can provide a certain degree of control over the generative process
by the bubble diagram constraint. Since WallPlan uses image-based
convolutional neural networks as the main network architecture,
we also convert the bubble diagram into an image representation
to adapt to our image-based encoding. We visualize the bubble dia-
gram as a raster image with a certain geometric size. Specifically,
the graph nodes are represented as circles with a certain radius
which is proportional to the room area, and the graph connections
are visualized as line segments. The user can define the room area
and the default setting is also provided. Note the room area here is
only used as a reference for the relative room size. The generated
floorplans may not strictly meet the area setting but will satisfy the
relative size constraint. We extract bubble diagrams of floorplans
from the RPLAN dataset [Wu et al. 2019] for training. Specifically,
the node of the bubble diagram can be obtained by finding the geo-
metric center of the room, and the room label and area are also
added as the node attributes. The connections of the bubble diagram
can be determined by finding the adjacencies of two rooms. There
is no need to modify the network architecture of WallPlan except
using several additional input channels to represent the bubble dia-
gram: (1) Diagram node mask taking values of 1, 2, ... for different
types of room nodes. (2) Diagram connection mask taking a value

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:8 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

(a) w/o WinNet

(b) w/o Coupled structure

(c) Full method

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 9. Ablation studies. (a) We remove WinNet from WallPlan to generate floorplans. (b) We decouple the coupled structure into a two-stage network. (c) The
floorplans are generated using our full method. Each column shares the same boundary as the input of floorplan generation.

of 2 for connections between the living room node and other room
node and 1 for edges between any two non-living room nodes.

Hybrid-constraint. We currently have discussed three types of
constraints: window, load-bearing wall, and bubble diagram. In gen-
eral, we need to separately train the specific network for each type
of constraint although they all have the same network architec-

WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs • 1:9

prove these two modules are indeed beneficial, ablation studies are
conducted. For the ablation study of WinNet, we just take it away
from WallPlan, use this version to generate floorplans, and compare
the performance to our full method. For the ablation study of the
coupled structure, we directly decouple the original structure into a
two-stage network, first generating the wall graph by GraphNet and
then predicting room labels by LabelNet. From Fig. 9, we can clearly
see that all ablated versions perform worse than the full method,
demonstrating the critical role of each component of WallPlan in
generating high-quality floorplans.

The lack of WinNet will bring two problems (Fig. 9a). Firstly,
the generated rooms are not of appropriate size, and some bath-
rooms are too large while some bedrooms are over-small. Secondly,
it may lead to some topological troubles, i.e., some bedrooms do not
directly connect to the living room, which is not in line with the
general principles of floorplan design. As mentioned in Section 4.1,
windows can be regarded as a soft constraint on floorplan design
and guide floorplan generation, improving the predictive accuracy
and overall rationality of floorplans. Similar geometric and topolog-
ical problems also appear in the results of the decoupled structure
(Fig. 9b), illustrating the independent generation of the wall graph
and room labels are not as good as the coupled generation. The
latter proposes a more reasonable space allocation. From the results
shown in each column, we see that providing the global semantics
guidance enables our method to “consider” more globally.

6.2 Qualitative evalution
Boundary constrained generation. Since both RPLAN [Wu et al.

2019] and Graph2Plan [Hu et al. 2020] can generate floorplans
from boundaries, we perform comparisons with these two meth-
ods. Fig. 10 shows the comparsion of the generated floorplans from
boundaries. In column (b), RPLAN generates several crumbling walls
in the first four rows due to complex post-processing on the raster
image. Broken walls may lead to a problematic floorplan (e.g., se-
mantic issue). In addition, RPLAN also generates floorplans with an
insufficient number of rooms, such as the example in the fifth row.
In column (c), Graph2Plan generates floorplans with some “tiny”
rooms in the second, third and fifth rows, especially the second
row where the generated bathroom box is almost invisible due to
the post-processing: room box alignment and stacking. Moreover,
bathrooms are “missing” in the first and fourth rows, as the gener-
ated bathroom box is totally covered by the bedroom box and has
become invisible. The floorplan quality of Graph2Plan is severely
impacted by the post-processing. It is worth mentioning our method
can produce significantly different but still high-quality floorplans
compared to the results of the ground truth, RPLAN, and Graph2Plan
in the sixth row thanks to our graph-based learning method, illus-
trating the ability of our method to generate a variety of floorplans
and generalize beyond its training dataset.

Bubble diagram constrained generation. Since Graph2Plan [Hu
et al. 2020] can receive as input both the boundary and bubble
diagram. we perform comparisons with Graph2Plan. It is worth
mentioning that Graph2Plan encodes the discretized spatial position
of the bubble diagram, which needs spatial locations as ours. Fig. 11
shows the comparison of the generated floorplans from the bubble

(a) GT (b) RPLAN (c) Graph2Plan (d) Ours

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 10. Comparison to the state-of-the-arts with the only boundary con-
straint. Each row shows the results of different methods applied to the same
boundary. (a) The ground truth floorplans, and the floorplans generated by
(b) RPLAN, (c) Graph2Plan and (d) our method.

diagram. The bubble diagram of the ground truth is provided as
the generation constraint. In the first two rows, our method can
generate plausible floorplans from the bubble diagram closer to the
ground truth than the results of Graph2Plan, especially the room
positions and sizes. In column (c), Graph2Plan generates floorplans
with some “missing” rooms again in the third rows due to the im-
proper box alignment or stacking order during post-processing. In
addition, the fourth row shows the topology issue of Graph2Plan, ob-
viously lowing the quality of the generated results. A deep corridor
is commonly used to connect different areas and lengthens the visual
effect of the home. In the last two rows, Graph2Plan cannot create
the effect of deep corridors while our method enables the design
of deep corridors as shown in the ground truth. We attribute this
to our more advanced floorplan representation. Since Graph2Plan
adopts the representation of room box, heuristic post-processing
will directly destroy the effect of deep corridors. To sum up, our
method achieves satisfactory floorplan generation. There are two
reasons contributing to this. Firstly, the bubble diagram is strong to

1:10 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

(a) Bubble diagram (b) GT (c) Graph2Plan (d) Ours

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 11. Comparison to the state-of-the-arts with the bubble diagram con-
straint. Each row shows the results of different methods applied to (a) the
same boundary and bubble diagram. (b) The ground truth floorplans, and
the floorplans generated by (c) Graph2Plan and (d) our method.

connectivities. Even if the predicted room boxes are perfect, there
always exists an inevitable gap between the floorplan constructed
by the room box and the ground truth, which is the essential flaw
of the representation of the room box.

Loading-bearing wall constrained generation. Fig. 12 shows several
floorplans generated from the loading-bearing walls. We did not
compare with other methods since state-of-the-art techniques based
on deep learning still cannot well realize the loading-bearing wall
constrained generation. In the top row of Fig. 12, various kinds of
constraint settings are provided. By examining each column, it can
be seen that the floorplans generated by our method satisfy the
given boundary and adapt to the loading-bearing walls. Similar to
the bubble diagram constraint, the loading-bearing wall constraint
greatly limits the solution space of the floorplan design. Therefore,
a certain degree of control over the floorplan generation can also
be realized by the loading-bearing wall constraint.

Free generation. We also compare the floorplans generated by our
method with the results by House-GAN++ [Nauata et al. 2021], as
shown in Fig. 15. House-GAN++ aims to achieve free floorplan gener-
ation from only the bubble diagram while our method always needs
the boundary as one part of the input. Note that the bubble diagram
here is slightly different from the above in Graph2Plan, having no
location information. Our method is enabled to generate floorplans

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 12. Loading-bearing wall constrained generation. Top row: the input
boundary as well as the loading-bearing walls. Middle row: the generated
wall graphs with the loading-bearing walls (in black) using our method.
Bottom row: the corresponding floorplans for visualization.

(a) Window (b) Bubble diagram (c) Loading-bearing wall

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 13. Generating multiple floorplans from the same boundary with dif-
ferent constraints. Each column shows the different settings of the specific
design constraint applied to the same boundary. (a) Window constraints.
(b) Bubble diagram constraints. (c) Loading-bearing wall constraints.

freely with the bubble diagram as the only constraint via a sim-
ple trick. Specifically, a retrieval approach similar to Graph2Plan
is adopted to match the input bubble diagram and retrieve the cor-
responding boundary. We can always get a lot of boundaries for
one input bubble diagram in this way. These boundaries are used
to achieve the bubble diagram constrained generation, producing

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs • 1:11

Fig. 14. Interpolation test. WallPlan generates floorplans from a set of interpolated boundaries. The first and last ones are the input boundaries for interpolation.

(a) Bubble diagram (b) House-GAN++ (c) Ours

Living room
Bedroom
Kitchen
Bathroom
Balcony
Storage

Fig. 15. Comparison to House-GAN++. An example of bubble diagram constrained floorplan generation using House-GAN++ and our method are shown. To
fairly compare the performance of the two methods, we adopt a drawing style similar to House-GAN++.

the “free” generation result. In Fig. 15, the generated floorplans
of House-GAN++ are unsatisfactory, and there is still much room for
improvement. A lot of geometric and topological flaws can be found,
such as short walls, weird shapes, wrong connections, etc. In con-
trast, our method can easily produce plausible floorplans. It shows
that the quality of the generated floorplans by our method is much
higher than that of House-GAN++. Our method outperforms gen-
erative models of mixing the image generation and vectorization,
as our method directly synthesizes walls and greatly reduces the
complexity of vectorization.

Generalization. Given the boundary as input, Fig. 10 shows our
method can generate very different floorplans from the ground truth
and not just memorize the training dataset. Our method can generate
multiple floorplans from the same input boundary with different
constraints. Fig. 13 shows a gallery of floorplans generated from the
same boundary. Our method explores different possible settings of
windows, bubble diagrams, and loading-bearing walls, and generates
varying floorplans adapting to the corresponding constraints. Fig. 13
shows floorplans generated from user-defined constraints, which
also indicates the results variety and generalization of our method.

To test the generalization capability, we interpolate two input
boundaries and generated floorplans for each interpolated boundary
using our method as shown in Fig. 14. As the input boundary slowly
changes, the floorplan structure also changes accordingly and main-
tains a relatively reasonable spatial division. This demonstrates the
desirable generalization capability of WallPlan.

Furthermore, we search for the nearest neighbor in the training
dataset using 100 boundaries and our results are generally differ-
ent from the nearest neighbors, indicating our method does not
simply memorize the training dataset. The results are given in the
supplementary material.

6.3 Quantitative evalution

FID comparison. Quantitative evaluation of the floorplan is not
easy, we compare to the state-of-the-art techniques using Fréchet
Inception Distance (FID) [Heusel et al. 2017], as most state-of-the-art
methods [Hu et al. 2020; Nauata et al. 2021; Para et al. 2021] all use
FID for evalution. FID is a global metric to calculate the distribution
similarity between the generated images and the ground truth. The
lower the FID score, the more similar the generated results to the
ground truth. Note that the FID score is highly correlated to the
example number.

We randomly select 9000 generated floorplans from each method
with different constraints and calculate the respective FID score.
Table 2 shows an obvious improvement in our FID score compared
to all baselines. Given only the boundary as input, the FID score
of our generated floorplans is reduced by 45% compared to RPLAN,
almost reduced by half (1.48 vs. 2.70). The number is decreased by
15% when compared to Graph2Plan (1.48 vs. 1.75). When adding the
ground truth bubble diagram as the constraint, the FID score of our
generated floorplans reached a minimum level, FID = 0.46, which
is significantly reduced by 64% compared to Graph2Plan, showing
a significant improvement in our method (0.46 vs. 1.27). We also
compute the FID score to quantitatively assess ablation studies
in Section 6.1 and the FID scores further confirm our qualitative
analysis and conclusions. Compared to the full method, the FID
score has increased by 49% and 35% for the ablation study of WinNet
(2.20 vs. 1.48) and decoupled structure (2.00 vs. 1.48), respectively.
These results are not surprising, as both the windows and coupled
structure provide a global guide to the generation and improve the
quality of floorplan design. Each part of WallPlan is critical.

To compare the FID score with House-GAN++, we freely generate
500 example floorplans constrained on the given bubble diagram
using House-GAN++ and our method. Table 3 shows the results. By
comparing, we see that our method is far superior to House-GAN++
with more than one order of magnitude in terms of the FID score.

[Para et al. 2021] propose a hybrid method composed of the
generative model and optimization method to generate floorplans

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:12 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

(a) GT (b) Hybrid-Method (c) Ours

Living room Bedroom Kitchen Bathroom Balcony Storage

Fig. 16. Comparison to Hybrid-Method with the same boundary. (a) The
ground truth floorplan. (b) The floorplan generated by Hybrid-Method. The
red ellipse shows the problematic optimization. (c) The floorplan is generated
by our method. We adopt a drawing style similar to Hybrid-Method.

(denoted as Hybrid-Method). To compare the FID score with Hybrid-
Method, we directly generate floorplans from the only input bound-
ary. The intersection of the test datasets of our method and Hybrid-
Method is picked as the examples to calculate the FID score, with
a total of 134 floorplans. From Table 4, we see that our method
outperforms Hybrid-Method. As shown in Fig. 16, Hybrid-Method
obtains the final floorplan by linear programming, therefore may
produce problematic floorplans due to the optimization.

Table 2. FID comparison. For the boundary constraint, Graph2Plan uses the
retrieved bubble diagram. For the bubble diagram constraint, Graph2Plan
uses the ground truth bubble diagram. 9000 generated floorplans are se-
lected to calculate the FID score.

Constraint Method FID

Boundary
RPLAN [Wu et al. 2019] 2.70

Graph2Plan [Hu et al. 2020] 1.75
Ours 1.48

Bubble diagram Graph2Plan [Hu et al. 2020] 1.27
Ours 0.46

Table 3. FID comparison to House-GAN++ with the only bubble diagram
constraint. 500 generated floorplans are selected to calculate the FID score.

Constraint Method FID

Bubble diagram House-GAN++ [Nauata et al. 2021] 66.18
Ours 7.76

Table 4. FID comparison to Hybrid-Method with the only boundary con-
straint. 134 generated floorplans are selected to calculate the FID score.

Constraint Method FID

Boundary Hybrid-Method [Para et al. 2021] 12.12
Ours 7.59

Statistics comparison. FID measures the distribution similarity
of the floorplan shape and other geometrics but is not good at
evaluating floorplan topology. To improve our evaluation, statistics
of the generated floorplans by different methods are conducted. Our
method is compared with RPLAN and Graph2Plan since these two

methods are more closely related to our work and we have sufficient
test data for statistics. We randomly select 9000 example floorplans
from each method with different constraints. We collected some
statistics: the number of rooms (denoted as 𝑅), the number of rooms
connected to the living room (denoted as 𝐶), the ratio between the
number of rooms connected to the living room and the total number
of non-living rooms (denoted as 𝐶𝑟), the number of living rooms
(denoted as 𝐿𝑛), and the area of the living room (denoted as 𝐿𝑎).
We average each statistic over all floorplans in the test dataset and
calculate the ratio between each statistic and the corresponding
statistic of the ground truth floorplans. The comparison result is
shown in Table 5, illustrating that our method outperforms the state-
of-the-art techniques in generating the topology of the floorplans.

Table 5. Statistics comparison. Each statistic is the ratio calculated based
on the ground truth floorplans. The ratio close to 1 shows that our method
can generate the topology similar to the ground truth.

Constraint Method 𝑅𝑎𝑣𝑔 𝐶𝑎𝑣𝑔 𝐶𝑟
𝑎𝑣𝑔 𝐿𝑛

𝑎𝑣𝑔 𝐿𝑎
𝑎𝑣𝑔

Boundary
RPLAN [Wu et al. 2019] 0.877 0.823 0.949 0.952 0.990

Graph2Plan [Hu et al. 2020] 0.969 0.926 0.964 1.034 1.008
Ours 0.983 0.970 0.995 1.002 1.018

Bubble diagram Graph2Plan [Hu et al. 2020] 0.983 0.945 0.965 1.030 0.994
Ours 0.984 0.974 0.993 1.001 1.018

6.4 Perceptual study
We have conducted the perceptual study to evaluate the gen-

eration quality and perceived realism of the generated floorplans.
We have planned five groups of perceptual studies, and the com-
petitors are RPLAN with the only boundary constraint (denoted
as RPLANboundary), Graph2Plan with the only boundary constraint
(denoted as Graph2Planboundary), the ground truth floorplan with
the same boundary (denoted as GTboundary), Graph2Plan with the
boundary and ground truth bubble diagram constraint (denoted
as Graph2Planbubble) and House-GAN++ with the only bubble dia-
gram constraint (denoted as House-GAN++bubble), respectively. Each
group of perceptual studies includes 20 comparison tasks where
each pair of floorplans are generated by our method and the com-
petitor. We also add an obviously simple comparison task as the
vigilance test for each group. Note that only the user data that passes
the vigilance test is valid. For each task, the user is asked to compare
a pair of floorplans and choose one floorplan that is more plausible
than the other or “Not sure”. We recruited 34 participants to finish
all of five groups of perceptual studies, all of which are undergradu-
ate and graduate students. At last, 6 participants failed the vigilance
test and we have collected 28 valid questionnaire data in total.

Fig. 17 shows a statistical violin plot of the results of perceptual
studies, and more detailed voting data is shown in Fig. 18. Of 20 tasks,
average 65.9% (AVG 13.18/20, STD 2.60) floorplans of our method
are chosen by participants comparing to Graph2Planboundary (AVG
6.00/20, STD 2.62). The proportion 72.5% (AVG 14.50/20, STD 1.90)
is higher when comparing to RPLANboundary (AVG 4.75/20, STD
1.76). In the perceptual study, our method obtains a similar score
(AVG 8.68/20, STD 2.02) with GTboundary (AVG 8.82/20, STD 2.11),
which indicates the high quality of our generated floorplans and
they are comparable to floorplans in the dataset. When comparing

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

WallPlan: Synthesizing Floorplans by Learning to Generate Wall Graphs • 1:13

Graph2Planboundary RPLANboundary GTboundary Graph2Planbubble House-GAN++bubble
0%

25%

50%

75%

100%

Proportion of choosing ours

Fig. 17. The violin plot of perceptual studies’ results. The X axis indicates
comparisons to the five competitors. The Y axis shows the proportion of
choosing the floorplans generated by our method, of the 20 tasks in each
group of perceptual studies. The dots and the thick black lines indicate
means and quartiles respectively. The dashed line on 50% indicates a random
guess rate given the forced-choice task.

Graph2Planboundary RPLANboundary GTboundary Graph2Planbubble House-GAN++bubble

Choose ours Choose the competitor Not sure

0

100

200

300

400

500
#Voting

Fig. 18. Voting results of five groups of perceptual studies. Of all 560 valid
tasks (20 tasks/participant × 28 participants) for each group, we record the
voting number of our method, the competitor, and not sure, respectively.

to Graph2Planbubble and House-GAN++bubble, our method shows a
huge scoring advantage. Our method almost completely defeats
House-GAN++bubble with a score of 83.0% (AVG 16.61/20, STD 2.23).
The statistical data of perceptual studies are highly consistent with
our qualitative analysis in Section 6.2. Average 79.6% (AVG 15.93/20,
STD 1.86) floorplans of our method are preferred by participants
compared to Graph2Planbubble (AVG 3.54/20, STD 1.91). The results
of perceptual studies verify the conclusions of the previous qualita-
tive evaluation.
7 CONCLUSION
We propose a novel wall-oriented method for automatically and
efficiently generating plausible floorplans. Different from previous
techniques, our method synthesizes floorplans by learning to gener-
ate wall graphs. This is achieved by regarding floorplan generation
as wall graph generation. A learning-based method WallPlan is
proposed to generate both the local geometry of the wall and the
global semantics of the floorplan by imitating the graph traversal.
Intensive experiments demonstrate that our method supports vari-
ous constraint generation, producing higher quality floorplans than
state-of-the-art techniques.

Design constraints. The constrained floorplan generation is en-
abled by feeding the encoding of inputs to WallPlan and training
to meet the constraints, instead of regarding the inputs as hard
constraints. Therefore, we have no theoretical guarantee that the
input constraints must be satisfied, although the case where the con-
straints are not satisfied is rare in our experiments. Fig. 19(a) show
a counterexample of the bubble diagram. One possible solution is
to generate subgraphs for each node in the bubble diagram instead
of generating one whole graph.

Multiple solutions. Theoretically, WallPlan can only find a locally
optimal solution for a given input. Thus our models cannot be
conveniently sampled to obtain diverse generation results like some
generative models such as House-GAN and House-GAN++. We will
explore possible technical routes to diversify floorplan generation.

Door setting. In the generated floorplan, we set room doors for
floorplan visualization. We use the rule-based algorithm in previous
works: RPLAN [Wu et al. 2019] and Graph2Plan [Hu et al. 2020]. In
addition, the load-bearing wall constraints are not considered in the
door setting. Thus there may be a door set in the load-bearing wall.
We would like to explore a smarter setting of doors in the future.

Graph generation. Our method is also limited by the type of graph
(Fig. 19b). Currently, our method cannot deal with graphs with
multiple connected components which will interrupt the continuous
traversal process. One straightforward solution is to introduce a new
node to start a new round of graph traversal. Besides, we require
the graph edge can only be horizontal or vertical, making only axis-
aligned floorplans can be generated. Although most floorplans in
the real world are axis-aligned, we would like to expand to handle
more general situations (Fig. 19c).

Image-based methodology. Technically, the image-based learning
method can well represent and encode various space constraints
in a unified form and efficiently encode regular spatial relation-
ships of the floorplan. We also think that Graph Convolutional
Network, Transformer, and other technologies have much potential
to solve this problem. The task of positional graph generation with
constraints needs to be redefined. It is exciting to explore these
techniques and we leave them as future works.

In the future, we would like to extend the scope and capabilities
of our graph-based generative method. We have discussed various
floorplan constraint generations in the paper. More design con-
straints are expected to be considered, which is a critical step to
build a truly practical design tool. In addition, it would be interesting
to borrow the idea of our method to study other design problems.
The proposed method can be further explored in other fields of
space planning in computer graphics.

ACKNOWLEDGMENTS
We would like to thank perceptual study participants for evaluating
our system and the anonymous reviewers for their constructive
suggestions and comments. This work is supported by the National
Natural Science Foundation of China (62102126, 62025207, 61972128)
and the Fundamental Research Funds for the Central Universities
of China (PA2021KCPY0050).

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:14 • Jiahui Sun, Wenming Wu, Ligang Liu, Wenjie Min, Gaofeng Zhang, and Liping Zheng

(a) (b) (c)

Garage

Fig. 19. (a) The bathroom (the red circle) of the bubble diagram is missing
in the generated floorplan (Right). The ground truth floorplan is also shown
(Left). (b) We cannot directly generate the floorplan with a separated garage.
(c) We cannot generate non-axis aligned or curved walls (the red ellipse).

REFERENCES

	Abstract
	1 Introduction
	2 Related work
	2.1 Space planning in computer graphics
	2.2 Optimization-based floorplan generation
	2.3 Learning-based floorplan generation

	3 Overview
	4 Method
	4.1 Initialization with windows
	4.2 Graph generation
	4.3 Room label prediction
	4.4 Coupled geometry-semantics generation

	5 Implementation
	5.1 Constrained floorplan generation
	5.2 Network training

	6 Evaluation
	6.1 Ablation study
	6.2 Qualitative evalution
	6.3 Quantitative evalution
	6.4 Perceptual study

	7 Conclusion
	Acknowledgments
	References

