This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE
Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 1

Theoretical and Empirical Analyses of the
Effectiveness of Metamorphic Relation
Composition

Kun Qiu, Zheng Zheng*, Senior Member, IEEE, Tsong Yueh Chen, Member, IEEE, and Pak-Lok Poon,
Member, IEEE

Abstract—Metamorphic Relations (MRs) play a key role in determining the fault detection capability of Metamorphic Testing (MT). As
human judgement is required for MR identification, systematic MR generation has long been an important research area in MT.
Additionally, due to the extra program executions required for follow-up test cases, some concerns have been raised about MT
cost-effectiveness. Consequently, the reduction in testing costs associated with MT has become another important issue to be
addressed. MR composition can address both of these problems. This technique can automatically generate new MRs by composing
existing ones, thereby reducing the number of follow-up test cases. Despite this advantage, previous studies on MR composition have
empirically shown that some composite MRs have lower fault detection capability than their corresponding component MRs. To
investigate this issue, we performed theoretical and empirical analyses to identify what characteristics component MRs should possess
so that their corresponding composite MR has at least the same fault detection capability as the component MRs do. We have also
derived a convenient, but effective guideline so that the fault detection capability of MT will most likely not be reduced after
composition.

Index Terms—Metamorphic testing, metamorphic relation, metamorphic relation composition, test oracle, fault detection capability.

+

1 INTRODUCTION

ESTING is a prominent technique for software verifi-
Tcation [1], [2]. This technique often requires the pres-
ence of a wseorfsle (or simply an orfsle, which refers to
some mechanism for the tester to verify the correctness
of the software output). However, in many situations such
as testing a complex numerical algorithm, the “expected”
correct software output (i.e., the oracle) is often unavailable
or infeasil?!e to determine. This problem is known as the
orkrlepro le , which refers to the situation where either an
oracle does not exist, or an oracle does exist but cannot be
practically used, possibly due to resource constraints.

Some approaches or techniques have been proposed to
alleviate the oracle problem in testing [3]. Among them,
metamorphic testing (MT) has been demonstrated by var-
ious studies to be a lightweight, yet effective technique.
When applying MT, the necessary properties of the software
under test are firstly identified from various sources, such as
the software specification. These properties are expressed in
the form of relations among sgftvvare inputs and outputs,
formally known as’’ ek o 1= reltmo & (M Rs). Since its
first publications in 1998 [4], [5], MT has been repeatedly
found to be effective at alleviating the oracle problem in

#
* Correo %t "";;I"Jl‘mﬁ'
; hho ok <
. G’QJf@’ZQf’e"hhemu leyooloftyAmhm"sﬁe"ef'b’
Elc'm'i’l E "; Beruy, s Ber' h,"h ‘#l‘crswv BC[]! #$1 191 C ¢ 'f(Z’
E" b fg M # e pr)@ ﬁ(t%’ g
o G e*is s ﬁ‘ Dep#rid e Tof cop’” Py et Wouk W Sof 26
E [y berd Mg o 'tz'ers; e’ blo y Hfyvor " 'IC 317
A s-rfltl'@ i -ﬂ' s,glt {Z’ h
. 0 *is e we § ool of 5 z‘tm "3k W g Bloy Cel
-rfl ee Bl 4 T"erszm Mel o'r 8 /IC3 , A sutlk @E" kil froos

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

composition. On the other hand, Liu et al. [31] reported
that the fault detection capability may be reduced after
MR composition, but without mentioning: (a) under what
situations the fault detection capability will be reduced; or
(b) how to avoid such a reduction happening.

In view of the above mixed findings, this paper aims
to answer the question: In what situations is testing with
a composite MR more cost-effective than testing with
its component MRs? Our analysis has discovered some
desirable characteristics in the component MRs, which can
be easily verified by the tester, that indicate whether or
not the composite MR should be used instead for testing.
These characteristics are defined in terms of the bijectiv-
ity/injectivity of the input/output mappings of the com-
ponent MRs. In addition to formally proving the validity of
these characteristics, we have also checked their practicality
through an empirical study. Furthermore, we propose a use-
ful guideline for a tester to better decide whether or not to
use MR composition. In brief, given a pair of metamorphic
relations MR, and MR@’ that fall into a special class of
MRs (as defined in Definition [I] of Section 3.1), where MR,
is composable with MR;" they should be used to form a
composite MR if both of the following conditions are met:
(a) the output mapping of MR, is injective; and (b) the input
mapping of MR _is a bijective mapping from the source
inputs of MR v to the source inputs of MR,.

The rest of this paper is structured as follows. Section
outlines the concept of MT and gives the motivation for
this study. Section [3| provides the basic concepts and ter-
minology, which facilitate the subsequent discussion of our
theoretical analysis of MR composition, which is discussed
in detail in Section [4] Section [5] complements Section [4] by
discussing our empirical analysis of MR composition. Based
on the analyses in Sections [4| and [5], Section [6] presents our
general guideline for MR composition and an analysis of its
applicability. This section also discusses some related works.
Finally, Section summarizes and concludes the paper.

2 BACKGROUND

2.1 Metamorphic Testing (MT)

MT is a lightweight, elegant, and effective technique for
alleviating the oracle problem. An intuition underlying
MT is as follgws: Even if we cannot verify the correctness
of an /" Wy #1 output, it may still be possible to use the
relations among multiple inputs and outputs for program
verification.

Example 1 (Shortest Path in an Undirected Graph).
Consider an algorithm f for computing the length of the
shortest path between any two nodes (a and b) in an undi-
rected graph G. Let: (i) P denote an implementation of f;
(i) P[G, a, b] denote the length of the shortest path between
a and b in G, which is computed by P; and (iii) f(G,a,b)
denote the expected (and correct) length of the shortest path.
When G contains many nodes and edges, for any a and b
in G, it is resource-intensive and time-consuming to com-
pute f(G,a,b) in a brute force manner for comparing with
P[G, a,b]. This is because the computational complexity is
of factorial order of the number of nodes in G.

Authorized licensed use limited to: HEFEFUNIVERSITY OF TECHNOLOG

ublication/redistribution requires IEEE permission. See http://www.ieee.org/, I
Y? Downloaded on March 13,2§2P2 at 10:53:20 UTC from IEEE Xp%ore. Restrictions apply.

2

With MT, this tedious verification task can be allevi-
ated by checking, for example, two properties, which are
expressed as metamorphic relations MR, and MR, as
follows:

e MRy: If a and b in G are swapped, then f(G,a,b) =

f(G,b,a);

e MRy If G’ is a permutation of G with o’ and ¥’ being

the permuted counterparts of a and b, respectively, then
(G, a V) = f(G,a,b).

With respect to MR; and MR5;, we should have
P[G,a,b] = P|G,b,a] and P[G,a,b] = P[G,d V]
Otherwise, we can conclude that P is faulty. d

Since its first publicaton in 1998 [4], [5], MT has been
successfully applied across a wide range of application
domains and platforms. Recently, funded by the UK En-
gineering and Physical Sciences Research Council and the
TETRACOM (TEchnology TRAnsfer in COMputing sys-
tems) EU project, a group of academics and researchers from
the Department of Computing at Imperial College London
(ICL) established GraphicsFuzz —a spinout company from
ICL. GraphicsFuzz [16] combined fuzzing and MT to test
graphics drivers. The company was acquired by Google in
2018.

A core concept of MT is the MR, which is a necessary
property of a targeted function f. An MR of f is a relation
over a sequence of two or more inputs htq,to, ..., t,i and
their corresponding outputs hf(¢1), f(t2), ..., f(t.)i, where
n 2. An MR can be written as R X" Y", where
X" Y™ are Cartesian products of the n inputs and their
corresponding n outputs. Generally, an MR can be repre-
sented as:

R(t1, to, oy tn, f(E1), f(E2)s --oy f(E0))-

Consider, for instance, MR, in Example 1, which can be
rewritten as:

R((G,a,b),(G,b,a), f(G,a,b), f(G,b,a)).

Give any MR, there exists a k, where 1 k < n,such
that:
t1, t tx denote the rre i p:
o l1, 12, ..., tx so ree i P -s# ‘o
o f(t1), f(t2), ..., f(tx) denote the so' ree 0" ' u3;

o txy1, tryo, ..., &, denote the follog 'p « P s3;

. f]gtzmrl), f(ﬁhurg), ceey f(tn,) TJ 74
P,

denote the follog 'p o =

Let P be an implementation of f. With respect to an MR,
applying MT typically proceeds as follows:

(1) Replace f with P inR.

(2) Execute P on a sequence of source inputs hty, to,
..., txi to obtain the corresponding sequence of source
outputs hP[t1], Plts], ..., P[tx]i.

(3) Generate a sequence of follow-up inputs htxy1, trio,
..., t, i in accordance with R.

(4) Execute P on the sequence of follow-up inputs
to obtain the corresponding sequence of outputs
hP[txy1], Pltrya], ..., Pltu]l.

(5) Compare the two sets of execution results with refer-
ence to R. If R is violated, then P is faulty.

The above steps are repeated for every identified MR.

ublications_standards/publications/ri

hts/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE
Transactions on Software Engineering

JOURNAL OF TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 3
2.2 MR Composition
. . _ Basic Concepts of a Function
The composition technique was originally proposed as a) _
method of generating new MRs from existing ones [30], [31]. Let f: A ¥ B be afunction (or mapping) from A to B.
Example 2 explains the basic concept of MR composition. Here: "
o Ais referred to as the 7o 7!;’1' #of f;
Example 2 (MR Composition): Consider the following o B is referred to as the 7040 #/ *of f; "
two MRs, corresponding to two well-known properties of o If f(a) =D, thenbis referreq”to asthe: f g ofa,
the sine function: and a is referred to as thepre: # g of b;
e MRy:1f2’ = z,then sin(z') = sin(z); « fis said to be ferwie if 8a, o' 2 A, f(a) = f(d')
) o ' implies a = a’;

o MRy:1f 3" = x + 2m, then sin(2') = sin(). « f is said to be s" rjesurve if 8b 2 B, 9a 2 A such
We can compose MR, and MR, together to form a tha.lt f(‘_‘gj ? bl;o b e if is both iniecti d
composite metamorphic relation MR1s, that is MR, (MR5). * gu:'?esglve' 0 be sgesmie if f is both injective an
MRys is f Il das: If 2/ = 2m), th : .
Sm(lle)li orzs(g) expressed as v (z + 2m) eS e Forany S A, f(S) denotes the set of the images

' of elements in S under the function f, such that:
Example 2 above shpvys that MR composition can gen- f(S) = U ff(s)g;
erate new MRs from existing ones. If we only generate test seS
cases from MR, (and ignore MR, and MR>) for testing, the . ”
testing cost is obviously reduced. In Example 2, testing with » J(A)isreferred toasthe rf "gof f,and f(4) B.

both MR, and MR, involves three program executions:
one for sin(x), one for sin(z + 27), and one for sin(z).
On the other hand, testing with MR, only involves two
executions: one for sin(x) and another for sin((z + 2m)).
Thus, if we only consider the testing cost, testing with MR
alone is definitely preferable to testing with both MR, and Definition 1. A Special Class of Metamorphic Rela-
MR5. However, beyond savings in testing costs, we should tions (MRs)

also compare the fault detection capability of MR with

that of MR, and MR,. This leads to the research question of Let

The specific class of MRs considered in our study is
defined as follows:

this paper: (RQ) Will testing a composite MR (e.g., MR12) e f: T ¥ R be atargeted function;

have the same chance of detecting faults when compared e [: T ¥ T/ (whereT T,andT' =1I(T) T)

with testing its component MRs (e.g., MR, and MR3)? be a mapping that takes in a source input and
Previous studies on MR composition do not provide a generates a follow-up input for f;

definite answer to RQ. For instance, the case study reported « O: R ¥ R (where R = f(T) and R’ = O(R)

by Dong et al. [30] has provided a ”Yes” answer to RQ. On R) be a mapping that takes in a source output (i.e.,

the other hand, the study by Liu et al. [31] reported that f(t)) and generates a follow-up output.

this is not necessarily the case. To date, to the best of our A metamorphic relation MR is a necessary property of

knowledge, no systematic studies have been conducted to f. MR is formally expressed as fplidws:

address our RQ. In view of this, we perform a theoretical

analysis with the intention of providing a definite answer.)

3 IMPORTANT CONCEPTS AND TERMINOLOGY

Before we present our theoretical analysis, we first formalize
some important definitions and concepts.

3.1 Metamorphic Relations (MRs)

In this paper, without loss of generality, we assume that
the targeted function (or algorithm) involves one single
input and one single output. However, generalizing our D
results to functions with multiple inputs and outputs is
straightforward.
Because composing any two MRs into their correspond-
ing composite MR is not always feasible, our work only
considers the special class of MRs defined in this subsection.
Before formally presenting this special class of MRs, let us]
revisit some basic concepts of mapping.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

t denote an input of f. Then, forany ¢t 2 T, ¢ is of the form
of hG, a, bi. Additionally,

. MRl: 8t 2 T1 (f([l(t)) = Ol(f(t))), where T1 = T,
I, (hG,a,bi) = hG,b,ai, and O;(x) = x.

. MRQ: 8t 2 Tg (f([g(t)) = Og(f(t))), where TQ = T,
I>(') is a permutation function that takes in hG,a, bi
and permutates G, a, and b according to a certain
pattern, such that I (hG, a,bi) = hG’,d’, Vi, where G’
is the permuted G, o’ and b’ are the counterparts of a
and b, respectively, and Oz (x) = .

Next, consider Example 2. Let T and R be the domain
and codomain of the sine function, respectively; we write
sine as f and t as the input of f. Then:

e MR3: 8t 2 T3 (f(]g(t)) = Og(f(t))), where T3
Ig(t) = t,and Og((E) =

e MR, 8t 2 Ty (f([4(t)) = O4(f(t))), where Ty, = T,
I4(t) =t + 27, and 04(1') =x.

T)

3.2 Composable MR and Composite MR

Below we first define a composable MR, which will facilitate
the definition of a composite MR.

Definition 2. Composable MR

Let

e f: T ¥ R be atargeted function;
e MR, and MRT be two MRs of f.
MR, is said to be 70" post L with MR i
e I (T') T, thatis, the range of I_is a subset of
Y . Y
the Jomaln of I,
«O[(R) R, (where R, = f(T) and R, =
f(?T)), that is, the range of O;' is a subset of the

don‘qiéin of O,.

For the rest of the paper, we use subscripts to link an MR
and its related components. For instance, in Definition
above, T,, I, and O, denote the set of source inputs, in-
put mapping, and output mapping corresponding to MR,
respectively.

Refer to Example 1. It can be deduced that:

(@ L(Th) = Th = T5 because (i) I(T1) = Ty and (ii)
T'W=T1T,=T,

(b) O1(R1) = R1 = Ry because (i) Ry = Ry as f(T1) =
f(T) and (ii) O1(Ry) = Ry because O; (x) = z;

(€) Ir(Ty) = Ty = Ty because (i) Ir(Tz) = Tp as I is a
permutation functionand (ii) 7Ty =15 = T;

(d) O2(R2) = R2 = Ry because (i) R = Ry as f(Ty) =
f(T1) and (ii) O2(R2) = Ro as we have Oz (x) = .

With (a) and (b), it follows after Definition |2 that MR-
is composable with MR;. Similarly, with (c) and (d), we
conclude that MR, is composable with MR5. It should,
however, be noted that for any two metamorphic relations
MR, and MRI,, if MR, is composable with MR@’ it is not
necessary that MR is also composable with MR,,..

We next formally define the construction of a composite
MR:

Definition 3. Composite MR and Component MR

Let

e f: T ¥ R be atargeted function;

e MR, and MRT be two MRs of f;

e MR, be composable with MR v
The fomposz‘-eM,R (denoted by MR;,I,), formed by com-
posing MR, with MR@" is a necessary property of f.
MR“’@’ is formally expressed as follows:

8t 2T, (f (L, (t) = Ox,(f (1)),
where

. T”'w = T,
e L =1, I)t) =L(I(t

1 1, (1,(1));
. 0. (f0) = (01 0)(f(1)) = 0.0 (F®)).
We write MR, = MR, MR _or MR,(MR) Alsp,

we refer to MR; and MR .8 thé ’l;”PO ! e-? ! oy 17
relfuo % of MRxl,.)

Refer to Example 2. It is straightforward to conclude that
MR, and MR, are composable with each other according to
Definition 2. We write f() as sin(t). Then, with respect to
MR, and MR, there are two possible composite MRs.

e MR, = MR, (MRQ) = MR, MRy:
8t 2 T2 (f(112(t)) = O12(f(1)))

where Tio = Ty =T, I12(t) = Li(I2(t)) = (t+ 2m)
and 012(33) = 01(02(1‘)) = .
. MR21 = MRQ(MRl) = MRQ MRli
8t 2 To1 (f(I21(t)) = O21(f(1)))
where 15, =T :T,Igl(t) :IQ(Il(t)) = t+2m and

021(58) = 02(01(56)) = X.

It should be noted that, when applying MT, the tester
is not required to explicitly specify the composite MR in
the format above: The task of composing composable MRs
can be automated through programming in accordance with
Definition . This automation can be implemented as fol-
lows. Two test scripts can be written —one calling function
I and the other calling function I,. If ¢ is an input to I ,

v . : Y
then the returned value from I,L, is used as an input to I,.
In this way, ¢ and the returned value from I, form a pair
of source and follow-up inputs for the composite MR, .
Similarly, the pair of source and follow-up outputs for MR,,‘I,
could be obtained by first executing a test script to call the
function Ol,, followed by executing another test script to call
the function O,.. Here, the functions I, I@,, O,, and Ol/ are
implemented according to MR, and MR . ‘

When composing more than two |V71RS, the resultant
composite MR can also be automatically obtained by re-
cursively applying Definition [3. Since I and O are map-
pings, the composition of Is and the composition of Os are
associative, that is: I, . = (I, Ir) I, =1, (Il, 1)
and 0, . = (0, O) 0.="0, (0, 0.) since
an MR is defined in terms of its own I and O, therefore,
the composition of MRs is also associative. For example,
MR,I,Z = (MR, MR,L,) MR. = MR, (MRI, MR.). The

0098-5589 (c) 2020 IEEE. Personal use is permitted, but rerublication/redistribution requires IEEE permission. See http://www.ieeeorgépublicationsﬁstandards/publications/ri%hts/indexhtml for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 13,2

2 at 10:53:20 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

order of composition, however, is important. For instance,
MR,I@ may not be the same as MR e In other words, the
composition of MRs is not commutative.

3.3 Evaluation of Fault Detection Capability

The evaluation and comparison of the fault detection
capabilities of two different MRs (regardless of whether or
not they are composite) requires some metric. We defined
two —one qualitative, and one quantitative —to use in our
study. To facilitate the definition of these two metrics, we
first present the following definition:

Definition 4. Satisfiability of a Set of Source Inputs
for an MR

Let

« f be atargeted function;

o P be an implementation of f;

o MR be a metamorphic relation of f with T, I, and
O being its set of source inputs, input mapping,
and output mapping, respectively;

« S be a nonempty subset of T'.

After executing all elements of S with P,

o S is said to sfmrsfy MR, if all elements of S satisfy
MR, that is,

8t25 (O (Pt]) =PI (t)]);

e S is said to vwifee MR, if all elements of S violate
MR, that is,

8:25 (0 (P[t]) & P[I(1)]).

With Definition [4, a qualitative metric is defined for
measuring the fault detection capability of an MR as follows:

Definition 5. Satisfiability of an MR

Let

o f be a targeted function;

o P be an implementation of f;

o MR be a metamorphic relation of f with 7" being
its set of source inputs.

With regpect to P, if T satisfies MR, MR is said to be
skwsfik le; otherwise, MR is said to be violfsrve.

Let 7% denote the set of all elements in T that violate
MR. In thyif case, 1™ is referred to as the sexof violfarve
so' ree P ws of MR. Obviously, T¥ = ;, iff MR is
skusfit le.

In Definition [5| above, given an implementation P and
an MR, it is equivalent to say that P violates (or satisfies)
the MR, when the MR is violative (or satisfiable).

Together Definitions [and [5| allow us to define the fol-
lowing quantitative metric for measuring the fault detection
capability of an MR:

Authorized licensed use limited to: HEFEFUNIVERSITY OF TECHNOLOG

ublication/redistribution requires IEE]%{permission. See http://www.ieee.or|

Definition 6. Fault Detection Rate of an MR

Let
[be atargeted function;
o P be an implementation of f;
o MR be a metamorphic relation of f with T" being its
set of source inputs and 7™ being its set of violative
source inputs.

Let 6 denote the ﬂ'#ll‘iueﬂtb *1r¢ae of MR with respect
to P. Then, 6 is defined as follows:
i
g=1"1
IT)
where jT%j and jTj denote the sizes of 7% and T,
respectively.

The satisfiability of an MR (Definition) indicates
whether or not a program under test can be revealed as
faulty by this MR. Furghermore, the fault detection rate
(Definition @]) indicates o0, ltkClT% it is that an MR will reveal
a fault in P with only one ¢ %o source input. Larger fault
detection rates indicate higher fault detection capabilities.

4 THEORETICAL ANALYSIS OF FAULT DETECTION
CAPABILITY

Given an implementation P, MR, and MR . there are four
possible scenarios:)
(1) Both MR, and MR ,are satisfiable;
(2) MR, is satisfiable and MR v is violative;
(3) MR, is violative and MRy Is satisfiable;
(4) Both MR, and MR , are violative.
For each of the above scenarios, we analyze the fault
detection capability of MR, .

4.1 Scenario 1

In this scenario, both MR, and MR , are satisfiable, that is,
0, = 91, = 0. Although we intuitively expect 6, to be 0,
let us formally prove it (Theorem). This proof needs the
following lemma.

Lemma 1.

Let
« f be atargeted function;
o P be an implementation of f;
e MR, and MR@, be two MRs of f;
o MR, be composable with MR ;
« S, be anonempty subset of leﬁ

If S satisfies MR and I (S) satisfies MR,, then S
LY. v vy v
satisfies MR%.

roof (Lé"" ¢ 1). Assume that S satisfies MR and I (S)

satisfies MR,. It follows after Définition thatl
8125 (0, (P[t)=P[I,®). (1)

v

ublications_standards/publications/ri

/] hts/index.html for more information.
Downloaded on March 13,2§2P2 at 10:53:20 UTC from IEEE Xp%ore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

and
81'21,(5) (0, (P[()=PIL()). @

By the definition of II,(SI) forany t" 21 (S), there exists
at2 S suchthatt' = Il(t) and for any ¢ 2 é‘ there exists
at' 21 (SL) such that ¢/ = I (). Therefore,” Eq 2 can be
rewritten as follows:

86250, (PII(0)=PILUI,M)). @

Immediately after Egs.[I]and[3), we have
8t25 (0. (0,(P[t]) =P[L(1,1)]). @)

v

It follows after Deflnltlon Ithat S satisfies MR, @y O
Now we are ready to present Theorem Iand its proof.

Theorem 1.
Len
. f ebf -trxlei}f "-tq,
. et "' p1d"e wap of f
. MR £,9 MR e nyoyRs of

e MR, e Vosf e 4 MR (Z’

71 MPBy, ¢ % MR kre shzsﬁf L e "t f” 0 Posue " out
orp 17 relfwo ™ MR Y 15 klso skmsfif e

rmﬂp ’éore 1). Assume that MR, and MR are both satis-
iable: From Defmmonl we |mmed|ately have T, satisfies
MR, and T satisfies MR Since MR, is composable with
MR , it follows after Deflnltlonlthat I (T) T,.Since T,
satlsfles MR, I (T) also satisfies MR '
It follows from Lemmalthat since T; satisfies MRL and
I (T,) satisfies MR,, T' satisfies MR, .Because T, =T
(Deflnltlon B, therefore, it follows after Deflnltloni that
MR,,I, is satisfiable, that is, 0,,7’, =0. O

Implication: Theorem|[Istates that, if an implementation
P under test does not violate any two component MRs
(MR, and MR 1,), P will also not violate any composite MR
constructed from MR, and MR v

4.2 Scenario 2

In this scenario, MR, is satisfiable (f, = 0) and MRZ,
is violative (8 > 0). Before analyzing the fault detection
capability of MR, , we first introduce the following lemma
to facilitate the proof of Theorem [2].

Lemma 2.

Let
« f be atargeted function;
o P be an implementation of f;
e MR, and MR@, be two MRs of f;
e MR, be composable with MR ;
. Sy be a nonempty subset of ng.

Suppose that S, violates MR and I (S) satisfies

Authorized licensed use limited to: HEFEI UNIVERSITY OF TEC

ermission. See http://www.ieee.or;
NOLOGYlD Downloaded on March 13, 2§2P2 at 10:53:20 UTC from IEEE Xp%ore Restrictions apply.

MR,.
MR, .

g

If O, is an injective mapping, then Sl, violates

P 2) Ginge S, violates MR ,

(Le
{)egfmtlonlthat
8t25y(0y(P[t]) &P[Iy(t)]). (5)

Because I (S) satisfies MR,, it follows after Definition [
that ‘

it follows after

8t'21(S) (0. (P[t']) =PI (t)]). (6)

By the definition of I (S), forany ¢ 21 S ,), there exists
at2 S suchthatt = I (); and for any ¢ 2 5” there exists
at' 2 }I(Sl) such that ' = I (t)- Therefore, Eq [6] can be
rewritten as follows:

8:25 (0. (P[I,0)=PLUI,®N. @

Assume that O, is an injective mapping. Immediately after
Egs.[5land[7], we have
8t25 (0.(0,(P[t]) & P[L(I,(1))]). ®)

Therefore, SL, violates MR, . d
With Lemma [2], we can now introduce Theorem 2] and
its proof.

Theorem 2.
Lenw* Y p ‘
o [ogfdrgmaf Puot
o P ek Pple e ?hlv *of |
e MR, ¥ b?’/]\’ﬂ% qol)hks:yf

e« MR, e~o Vosf e 4w MR @'
h

$’Jpposc vt MR, 15 skusfi fc(& = 0) £ MR s

violf wrve(91 > 0)@70 Y Sl fe'm'c fppz faue "MR

s violkwrve ¥ Y 0 =0 G’

Z.rmy(eorc 2) To determine 6,. , we need to know the set
of source inputs (7.) and the set of violative source inputs
Tz) of MR, . It foilows from Definition 3| that 7', = T
In What follows we will prove that, if O, is an |nject|ve
mapping, then T" = T"

Since MRI is’ V|0Iat|ve we have T = T“‘ L T“
where 7% & ;. Since MR, is composable Wlth MR lwe
have Il(‘lTi) T,. In turn, we have Iy}(TZ) T, “and
I (T")(T,. Since MR, is satisfiable, it follows after
DeflnltlonlthatT satisfies MR,.. Therefore, we have

I (T7) satisfies MR,; (i)
and
Il,(TTj) satisfies MR, if Ilr(Tiz) 6 ;. (i)

Next, let us assume that O, is injective. Since we have (i)
above and TZ violates MR » it follows from Lemmathat

1. In this paper, we use TV to denote the complementary set of TV
over T'. For instance, Ty is the complementary set of 73 over Ty.

/publications_standards/publications/ri

hts/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

TZ violates MR,@,. (iii)

Furthermore, we have
™ T iv
Y Ty’ (iv)
because T;T contains all the elements that violate MR, .
Next, we consider the following two exhaustive cases:

Ckse(): Tiz & ;.

Since we have (ii) and TZ satisfies MR , it follows from

Lemma [1f that Tiz' satisfies MR, . Furthermore, since we

have (iii) and 7, = T = T* [T*, therefore, we have
v v v v

Ty =T*.

Ctse(?: Tiz =
Since we have (iv), T, T,v (where T% = Tl,), and

T =T [T*=1T", therefore, we have T =T~
v v v v v v

In view of the above two cases, regardless of whether
or not 7 is empty, we have T, = T". Then, it follows after
Definition [§] that, v

iy T
v Ty J JTZJ v
In other words, MR,@/ is violative. O

Implication: Theorem [2] gives a sufficient condition for
MR, and MR having the same fault detection capability
if MI'-%J is satisfiable.

A previous study [31] reported that composing some
”loose” MRs may result in a composite MR with a lower
fault detection capability. However, that study has not for-
mally defined the meaning of ”loose” MRs. By means of
our theoretical analysis, we found that a ”loose” MR in fact
refers to one whose output mapping is not injective.

4.3 Scenario 3

In this scenario, MR, is violative (8, > 0) and MR _ is
satisfiable (f = 0). Before introducing Theorems and A
we need the %ollowing lemma to facilitate their proofs.

Lemma 3.

Let
« f be a targeted function;
o P be an implementation of f;
e MR, and MR@ be two MRs of f;
e MR, be composable with MR@;
. S?’, be a nonempty subset of TZ:.

If S satisfies MR and I (S) violates MR,, then S
.Y Y vy 4
violates MR%.

frmﬂ Lé"" ¢ 3). Assume that there exists a nonempty S

, such that S satisfies MR, and II,(SZ,) violates M}%x
Since S satisfies MR ot follows after Definition [4] that
8:25 (0, (Plt]) =PI, (1). ©)

v v

7

Because I (S) violates MR, it follows after Definition
that S

8121,(5)(0.(PIt) & PIL(t). (10

By the definition of I@(Sg), forany t’' 2 I?’,(S), there exists
at2 S suchthatt’ =1 (¢);and foranyt 2 S , there exists
at' 2 1711,(81,) such that #/ = I (t). Therefore, I%q. [10] can be

rewritten as follows:

8¢25 (0, (PIL,(V) 6 PILUI,M). @
Immediately after Egs.[9|and[11], we have
8125 (0,(0,(PIt) & PIL(I,(1)). (12
Therefore, S violates MR, . O
Theorem 3.
Lew
I Lp sty g f wao
o« [ogf wrgmap o,

o« P ek " ple e o of §
« MR, ¥y MR & l;,vovlm_/(s of f.
o MR, ero post le giwv MRH(E'

h
s',#;lpose vte MR, 5 violkmve (0, 3> 0) £ MR s
sk Lo 9@\: OB I (T)= "Ts we *MR, s violf e
W b, = ‘—1! > 0(gereTab § Ta T, 879
1(T)=T)E

v

roof(. }éoré" 3). To determine 6, , we need to know the set
of source inputs (7,) and the set of violative source inputs
(T.;'I) of MR%. It follows from Definition hat ,,=T,
In what follows, we will prove that, if IIV l/) = T, then
T;v =TaWhere Tu6 ;, Ta Ty, and I?’,(Ta)‘ = Ii)

‘Since MR, is violative, we have T, = T [T, where
Ty 6 ;. Let us assume that: (a) I (T') = T.; and (b)
T4T, T,suchthatl (T« =Ty andI (T,)=T}.Since
T 6 ;,wehave T.6 ;1, = ad’ ‘

0

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE
Transactions on Software Engineering

JOURNAL OF IATe

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

TABLE 1: Fault Detection Rates (91.1,) of MRM in Different Testing Scenarios

Scenario Ox Oy maz{0x, Oy} Oxy
1 =0 =0 =0 Oxy =0 (Theoremlﬂ
2 =0 >0 =0y If Ox is injective, then Oxy = Oy (Theorem
] o i o If Iy (Ty) = Tx, then 6y > 0 (Theorem|3]
If Iy (Ty) = Tx and Iy is bijective, then Oxy = 0x (Theorem|4j
4 -0 <0 Varies in different If Iy(Ty) = Tx and Ox is injective, then it is very likely to have
situations Oxy >0
As T;‘W. (viii) the beginning of Section which was further verified by

Let us assume that MR% is satisfiable, that is, T;‘l, =;
or 0% = 0. Immediately, with (vii) and (viii) above, we have
Ay = Az = ;. Because Ty, = Ay [A = Ay =T, \T%, we
have T, T%.Since Ta= A3 [Ay = Ay = T\ T}f, we
have T« Tf. Furthermore, since le =TalT,=T" tTZ
we have T'a= T* and T, = T*. Since I (T4 = T and
I,(Ty) = T% by définition, we have '

1(17) =13,

1%

(ix)
and
1(T%) =T,)
Since (ix) and (x) follow after the assumption that
0. = 0, they are necessary relations for §,. to be 0. Relation
(ixﬁ implies that, for every violating source test input for
MR » its corresponding follow-up input must be a violating
source input for MR,. Similarly, relation (x) implies that,
for every non-violating source input for MRL,, its corre-
sponding follow-up input must be a non-violating source
input for MR,.. Obviously, these two relations are very tight
and restrictive and, hence, they are unlikely to be satisfied
simultaneously. Since the situation of 6, = 0 requires the
simultaneous satisfaction of relations (ix) and (x) (which is
very rare, as explained above), it can be comfortably con-
cluded that the situation of 0% > 0 is very likely to occur.
In summary, the above theoretical analysis has showed that
our hypothesis will be strongly held because of two very
tight and restrictive relations (ix) and (x). We performed an
empirical study to support the above theoretical analysis for
Scenario 4. Details will be given in Section
Table 1] summarizes our theoretical analysis on the fault
detection rates of MR% in the four different testing scenar-
ios.

5 EMPIRICAL ANALYSIS OF FAULT DETECTION
CAPABILITY

In the first three testing scenarios (Scenarios 1, 2, and 3)
discussed in Sections[4.1],[4.2], and [4.3), we are able to obtain
a definite answer after a theoretical analysis. In other words,
for each of those three scenarios, we have found the char-
acteristics that component MRs should possess to guarantee
that a composite MR has the same chance of detecting the
faults as its component MRs do. On the other hand, Sce-
nario 4 is too complicated to have a definite answer solely
based on a theoretical analysis. Nevertheless, our theoretical
analysis of Scenario 4 has led to a hypothesis, as stated at

Authorized licensed use limited to: HEFEFUNIVERSITY OF TECHNOLOG

ublication/redistribution requires IEE]%{permission. See http://www.ieee.or|
. Downl

an empirical study to be discussed in this section. We next
discuss the settings and observations of our empirical study.

5.1 Subject Programs

Our empirical study involved the following four subject
programs:

o 1k ey kre(S ® It accepts three numbers, corre-

‘sponding to the three edges of a triangle, and calculates
its area if a legitimate triangle can be formed [30].
DerseMeur X’ up liskurp '€ YW). It accepts two sparse
matricesﬂ as inputs and computes their product ma-
trix [30].

D #srs(D A). It is commonly used in bioinformat-
ics [8]]. It takes in a matrix containing a set of species’
DNAs and geneﬁ%tes an evolution tree.

e K efrese e/g ors(K). It is a machine learning
classifier algorithm, which takes in a training data set
and a testing data, and then predicts the label for the
latter based on the former [19].

Table gives more details about these subject programs, in
terms of their inputs, outputs, and the approaches we used
to assert two equivalent outputs.

5.2 Experimental Procedures
We applied the following steps to each subject program:

(1) For each identified MR, manually check its compliance
with Definition . This check is required because Defi-
nition [1f specifies a special (but common) class of MRs
that our study has assumed.

(2) For any tuple of two MRs (MR, MRI,), use Definition
to manually check whether MR, is composable with
MR v If yes, then check whether: (a) O,. is injective; and
(b) Il,(Tl,) = T,. If yes to both (a) and (b), then generate
the composite MR (MR%) from MR, and MR .

(3) Apply mutation analysis and random testing to esti-
mate individual fault detection rates for MR,, MR,
and MR“@"

5.3 Component and Composite MRs

Table [3| lists all the MRs used in our study; they were
sourced from previous MT-related studies [8], [19], [30]. All
these MRs were then checked and confirmed to comply with
Definition 1] (see step 1). There were 23 (7 + 7 + 6 + 3) such
MRs for the four subject programs. The 3rd column of this

2. A sparse matrix is a matrix in which most of the elements are zero.

/publications_standards/publications/ri; r
oaded on March 13,2§2P2 at 10:53:20 UTC from IEEE Xp%ore. Restrictions apply.

hts/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

10

TABLE 2: Inputs, Outputs, and Equivalent Output Assertions of Subject Programs

Subject . .
Programs Inputs (l) Outputs (g,)) Assertion of Equivalent Outputs
4 If the three €dges form a legit-
. @ (a, b, c), where a, b, and c denote the imate triangle, then) = & Letgand 3’ denote two outputs. Then,
T o ;hree edges of a triangle where g denotes the arep of the = ¢/ iff |s — /| <ef.
triangle
= (A, B), where A and B denote _ Let C = [jj] and C7 :é ij] denote
IMM {vvo sparse matrices in the Compressed r Gl}t%}ﬁh:r:g%denmes the two outpuLts. Then, C = C' iff for all
Sparse Row (CSR) format P l ;j -, gj‘ <el,
: = here
= X, where X denotes the species’ *‘3 » W Let (,, yand (/ "} denote two
D A NAs and is in the format of a (2 x*) &1 slructgszioctsf?r? Izg?‘tgfat?]% outp‘tts‘ ‘T‘hen i ;)” (/= 1yiff
matrix (2= = number of species;* = P J| < eT n is ‘demlcal to

length of a DNA sequence)

generated evolution tree, re- |_;
spectively

11 I'; ‘”

!

= (X,C,S), where X denotes the
5ttr|butes of the training data set in the
format of a (v X%) matrix (, =number
of entries of‘the training data set;* =
K number of attributes of each entry), C
denotes the class labels of the training
data with a size of , and S denotes the
testing item’s attributes with a size of*
elements

) = ¢, where c, denotes the
alculated class label for S

¥

Let ¢, and ¢, denote two class labels.
Then, c, = ¢,/ iff ¢, and ¢/ are exactly
the same.

(") e is an extremely small value and is set to 10—,

table gives the details on these MRs. For each such MR, we
also explicitly list its set of source inputs (4th column), input
mapping (5th column), and output mapping (6th column) in
the table.

For any tuple of two MRs (MR,, MR) checks were
performed to ensure that conditions (a) and (b) in step 2
were fulfilled. After checking for all the tuples of two MRs,
a total of 106 (. < €42, g¥M=42, D A=16, and K =6)
eligible pairs of component MRs were found, thereby re-
sulting in the construction of 106 composite MRs. As an
example, let us consider MR; and MR5 of . ¢ €n Tablel
We write the function corresponding to <. @as f. It can
be deduced that: (a) Ty = Il(Tl) = T1 = IQ(TQ) =T
because both I; and I, are bijective mappings from T to
T;and (b) Ry = O1(R1) = Ry = Oz(R2) = f(T) because
both O; and O, are bijective mappings from f(T) to f(T).
It then follows from Definition [2| that MR, and MR are
composable with each other. Therefore, MR, and MRo;
were formed and tested in our study.

5.4 Measurement of Fault Detection Rates and Genera-
tion of Mutants

According to Definition @] the fault detection rate of an MR
with respect to a program P is the ratio of jT%j (the size of
the MR’s set of violative source inputs) to jTj (the size of
the MR’s set of source inputs). However, because the size
of T is often very large, therefore it is practically infeasible
to conduct exhaustive testing to determine the value of 7.
In turn, we cannot compute an MR’s fault detection rate
based on Definition @] Therefore, in this study, we used
the following equation as the “estimator” of an MR’s fault
detection rate (0):

07 N

where N” denotes the number of tested source inputs that
caused violations to a given MR, and N denotes the total
number of source inputs used in testing.

Mutation analysis [32] has long been used in MT to
evaluate the fault detection rate of MRs (e.g., in [19]). Thus,
we also used the mutation technique (together with random
testing) to estimate the fault detection rates of component
and composite MRs. Table |4] shows the mutants of the
four subject programs with injected faults. We randomly
generated 10000 (N = 10000) source inputs for each of
the four subject programs.

For each mutant of every subject program, we then
performed two operations: (a) used each identified compo-
nent MR and each constructed composite MR to generate
a separate set of follow-up inputs from the set of source
inputs (with a size of 10000); and (b) executed these source
inputs and follow-up inputs with the mutants and checked
for violations to MRs.

5.5 Experimental Observations

Table shows the estimated fault detection rates of compo-
nent and composite MRs when 6, > 0 and 8 > 0 (a total of
108 such cases). The complete set of experimental data of the
estimated fault detection rates for the four subject programs
are given in Tables 7, 8, and 9 in the Appendix (as a separate
file).

0 0O

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE
Transactions on Software Engineering

JOURNAL OF I8TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 1
TABLE 3: List of MRs Used in the Empirical Study

IS,:: MRs Description T Input Mapping Output Mapping
MRy 1 {a 0,y =(b,a,c), theng =3 =T 5h({abc)=(ba,c) O1(s) =%
MRy If (a/,V,c) = {a,c,b), then §’ = T =T Ix({a,b,c)) ={a,cb) 02(3) =3
MRa If (a/./,/) = {cb,a), then &/ = § Ts=T Is{{abic)) = (c.b,a) 03(3) = ¢
R ® MR, |If (a’,b', ') = (2a,2b,2c), then 3’ = 43 Ta=T Ia({a,b,c)) = (2a,2b,2c) Oa(s) = 4%
B 1ol I\ \/272,2
Mps 1@ V.e) = (VIS 2E —at b then o p(a,b,0) = (VBT IF —aZ b Os(s) =+
=3
'y = \/272_2
MRe {0V = (a, V2R £ 2E =5 e g o ((a,b,0)) = (0, V22 F2E —F0) Oss) =%
$ =3
! / VA 2 2 _ .2
MRy '@V = (b V22— Bt gy fab,0) = (b VZZ R =P) O1(8) =
» — »
MR1 If{A'T
YU

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE
Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 12

10’ 1000’ AR YR R R R
0.8 0.9984
0.67 S SYevoV ;',ﬁﬁﬁfﬁf ossl Amaw <
0.47 XMMMNMVV V287V S 09947
0.2 MM 0.9921

. 0.990
0 oO 5 10 15 20 25\ 30 35 40 0 5 10 15 20 25
1.0 1.0
0.8 0.8
0.6 0.6
0.4 04{
0.2 0.2
0.0 ‘

0 5 10 15 20 25

Fig. 1: Comparison among minfd,, 919, mazfo,, 939, and 9,?7,.

step (a), the composition of MRs should not be complex. generated by us (because we could not find mutants for
However, as a precaution to ensure that the generated this program from the published work). To a large extent,
composite MRs were valid with respect to their correspond- selecting extent,

ing subject programs, we performed two tasks. Firstly, we

conducted a desk check on these composite MRs, during

which we detected no abnormality. Secondly, we tested all

the four subject programs (their “original” versions; not

their mutants) against these composite MRs. The testing

results did not reveal any MR violation. To a large extent,

these two tasks provide assurance that the composite MRs

were correctly generated.

Subject program selection: Undoubtedly, it would be
desirable to have a large set of programs for our empirical
study. However, using a large set of programs was prohib-
ited due to resource constraints. Nevertheless, using these
four subject programs still provided a good insight into
the validity of the hypothesis as stated at the beginning
of Section because these programs cover: (a) different
application domains, including numerical calculations (., § Y
and ¢MM), bioinformatics (D A), and machine learning
classifiers (K); and (b) different levels of complexity
(.5 ®nd K are relatively less complex in logic, whereas
YMM and D A are relatively more complex).

Mutant generation and selection: The mutants used for
- ®gum, and D A were sourced from other previous
‘studies [8]], [30], whereas the mutants used for K were

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF I8TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017
TABLE 4: Mutants of Subject Programs

15);‘: ?143“' Code Change for Mutant Generation
1 Swap lines 6 and 8
@ M2 Replace ”p=(at+b+c)/2” by "p=(at+b+c)*2” in line 22
T > u3 Replace ”/2” by ”*2” in lines 32, 40, and 48
Replace ”(math.sqrt(3.0)*a*a)/4.0” by ”(math.sqrt(3.0)*a*a)/2.0”
M4 in line 102
1 Replace "n” by ”1” in line 43
2 Replace ’c[nz] = aij * b[K]” by "c[nz] = aij” in line 52
GUM 3 Replace c[nz] = aij * b[k]” by "c[nz] = b[Kk]” in line 52
m Replace “c[icol] += aij*b[k]” by "c[icol] += aij” in line 56
s Replace “c[icol] += aij*b[K]” by "c[icol] += b[K]” in line 56
1 Replace "ns=1<<G” by "ns=1<<C” in line 720 in file "seq.c”
Replace “ally[alias[i-1]-1]!=alias[i-1]” by
= "ally[alias[i-1]-1]>=alias[i-1]” in line 553 in file "seq.c”
"3 Replace ”i<b” by "i<=""in line 1097 in file ”seq.c”
D A Ha Replace ”j=i+1” by ”j=i-1" in line 555 in file ”seq.c”
s Replace ”i<=(long)O” by i>(long)O” in line 994 in file ”seq.c”
Replace “itemp=alias[i-1]” by “itemp=alias[i+1]” in line 563 in
He file ”seq.c”
Replace ”j<=(long)O” by ”j>=(long)O” in line 1119 in file
1724 ” "
seq.c
Replace ”p->numsteps[i]+=weight[i]” by
re ”p->numsteps[i]-=weight[i]” in line 946 in file "seq.c”
e Replace ’j<=(long)O” by ”j>(long)O” in line 1126 in file ”seq.c”
n1o Replace ”(i==j)” by ”(i'=j)” in line 2700 in file ”seq.c”
na Replace ”-” by ”/”" in line 29 in function “euclideanDistance”
2 Replace ”-” by ”+” in line 29 in function “euclideanDistance”
u3 Replace ”+=" by ”="in line 29 in function “euclideanDistance”
Replace "math.sqgrt(distance)” by “distance” in line 32 in func-
K Ha tion “euclideanDistance”

Replace "reverse=True” by "reverse=False” in line 41 in function

”getNeighbors”

e Swap lines 57 and 59 in function ”getResponse™

ur Replace ”+=" by ”*="in line 52 in function ’getResponse”

18 Replace ”+=" by ”=""in line 52 in function ”getResponse”
Replace “reverse=True ” by "reverse=False” in line 55 in func-

M9 tion "getResponse”

(a) both MR, and MRL, belong to the special class of
MRs in accordance with Definition [1];

(b) MR, is composable with MR y according to Defini-
tion[Z; ‘

() Ilr(Tl,) =T, IW is bijective, and O, is injective.

In the above guideline, condition (c) involves applying The-
orems 2, 3, and 4 as discussed in Section {4} This condition
also involves the hypothesis stated at the beginning of
Section which was confirmed by our empirical analysis
(Section [5) to be highly likely to be held true. When the
injectivity/bijectivity requirement of our guideline does not
hold, testers should consider other information about the
program under test, and the amount of testing resources
available, to inform their own decisions on MR composition.
For example, if the program has a long execution time,
then the reduction in program executions achieved by using
composite MRs (even at the expense of a slight deterioration
in fault detection effectiveness) may still be a better choice.

Tablesummaries the fault detection capability of MR%
in four different testing scenarios. It can be seen from Table
that, in three of the four scenarios (Scenarios 1, 2, and
3), the fault detection capability of the composite MR (i.e.,
MR%) is identical to those of applying both MR, and
MR , if the three preconditions of the general guideline
are satisfied. Since fewer test cases are required for testing
MR%' when compared with using both MR, and MR ” the
cost-effectiveness of MT in using MRTL, (instead of MR,

Authorized licensed use limited to: HEFEFUNIVERSITY OF TECHNOLOG

13

and MR) is obviously improved in these three scenarios.
Even in Scenario 4 where a definite conclusion on the fault
detection capability of MR% (when compared with MR,
and MR@) cannot be drawn, we argue that it is very likely
that the cost-effectiveness of MR% is higher than MR, and
MR v because of two reasons: (a) the situation where 6, = 0
should rarely occur according to our theoretical analysis (see
Section[4.4]), which was further confirmed to be true by our
empirical analysis (see observation 1 in Section [5.5); and
(b) our empirical analysis showed that 6, ~ minft,,0 g
for all cases and, in about three-quarter of the cases, we have
9% mazxfo,, Glg (see observations 2 and 3 in Section).

6.2 Applicability of our General Guideline

To evaluate the practicality and usefulness of our general
guideline on MR composition, we reviewed a set of pub-
lished papers on MT through which the following two
questions could be answered:

Q1: How likely is it that a given MR belongs to the special
class, in accordance with Definition

Q2: Given an MR that belongs to the special class, according
to Definition , how likely is this MR to have a bijective
input mapping I and an injective output mapping O?

We first studied in detail two recent survey papers on
MT [37], [38], and then identified some other works on
MT that have been developed after publishing those two
surveys. After these exercises, we identified 10 popular
application domains for MT as shown in Table [g|. For each
of these domains, we found some relevant published works
related to MT. After a close examination, we compiled a list
of MRs which were mentioned in these published works.
Further checking of the list allowed us to identify some
”common” MRs with similar types or characteristics within
the same domain and even across different domains. These
”common” MRs were counted only once in our review. For
example, among the three MT-related papers on compilers,
after tallying the count for “common” MRs, we found eight
distinct MRs. We caution readers that, although our review
did not (which was also infeasible to) involve every MT-
related paper, we argue that the compiled list of MRs from
our collected papers was fairly comprehensive because the
list of MRs covered 10 different and popular domains for
MT.

For Q1, we found 54.88% of MRs belong to the spe-
cial class, in accordance with Definition [I]. For Q2, we
found that, among those MRs complying with Definition
, 91.11% of them have a bijective I and an injective O.
Based on these findings for Q1 and Q2, we can conclude
that the three preconditions in our general MR composition
guideline can easily be met (50.00% 54.88% 91.11%).
This shows that our general guideline should be widely ap-
plicable to many testing scenarios and application domains.

We also noted that the applicability of our guideline
varies across different application domains. More specifi-
cally, according to the results in 6] the guideline is largely
applicable to compilers, numeric and scientific programs,
and Al systems (e.g., image processing and autonomous
car systems), and relatively less applicable to biomedical
applications, web services, embedded systems, and online

ublication/redistribution requires IEE]%{permission. See http://www.ieeeorgépublicationsﬁstandards/publications/ri%hts/indexhtml for more information.
. Downloaded on March 13,2

2 at 10:53:20 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

14

TABLE 5: Estimated Fault Detection Rates of Component and Composite MRs (where 6, > 0 and 91, > 0)

Test

Test

IS,:: Ref;rence I]l)l‘ Ox Oy Oxy Is,;l: Reference 1}/][)11 0x Oy Oxy
o. No.
1 u1 61:0.4482 03:0.4356 613:0.4482 17 ua 61:0.9962 07:0.9969 617:0.9969
2 u1 63:0.4356 01:0.4482 631:0.4356 18 ua 67:0.9969 01:0.9962 671:0.9962
3 n1 61:0.4482 0s5:0.4372 615 0.6605 19 ua 05:0.9969 07:0.9969 657: 0.9969
4 n1 05:0.4372 01:0.4482 051:0.4372 20 na 67:0.9969 0s5:0.9969 675: 0.9969
5 n1 01:0.4482 0s: 0.2123 016: 0.4372 NN 21 us 01:0.9962 04:0.9968 614:0.9962
6 n1 06:0.2123 01:0.4482 061: 0.6605 22 us 04:0.9968 01:0.9962 641:0.9968
7 n1 61:0.4482 07:0.2249 017:0.2249 23 us 01:0.9962 0s: 0.9968 616: 0.9962
8 p1 67:0.2249 01:0.4482 071:0.2249 24 us 06:0.9968 01:0.9962 661: 0.9969
9 w1 03:0.4356 0s5:0.4372 635: 0.6605 25 us 04:0.9968 0g: 0.9968 646: 0.9968
10 ni 05:0.4372 03:0.4356 6s53:0.4372 26 us 06:0.9968 04:0.9968 6p4: 0.9968
11 n1 63:0.4356 0g: 0.2123 636: 0.2123 1 2 61:0.0774 05:0.2085 612:0.2071
12 n1 06:0.2123 03:0.4356 6g3: 0.2123 2 w2 62:0.2085 01:0.0774 621: 0.205
13 Q1 03:0.4356 07:0.2249 037:0.4372 3 w2 03:0.1116 01:0.0774 031:0.1444
14 u1 67:0.2249 03:0.4356 673: 0.6605 4 u2 61:0.0774 04:0.9936 614:0.9943
15 u1 05:0.4372 0s: 0.2123 056: 0.4372 5 u2 04:0.9936 01:0.0774 641:0.9938
16 u1 06:0.2123 05:0.4372 0g5: 0.4372 6 u2 01:0.0774 0s: 0.2522 616: 0.2543
17 n1 05:0.4372 07:0.2249 057:0.4372 7 u2 06:0.2522 01:0.0774 661: 0.2515
18 n1 67:0.2249 0s5:0.4372 675:0.4372 8 u2 03:0.1116 02:0.2085 632:0.1116
X)) 19 7 06:0.2123 07:0.2249 0g7:0.4372 9 w2 02:0.2085 04:0.9936 624:0.9869
T o 20 5 67:0.2249 0e: 0.2123 676: 0.4372 10 n2 04:0.9936 02:0.2085 642:0.9799
21 ©2 0s5:0.6652 0g: 0.6636 0s6: 1.0 11 ©2 02:0.2085 0g: 0.2522 626:0.2434
22 w2 06:0.6636 0s: 0.6652 fe5: 1.0 12 w2 06:0.2522 0:0.2085 6g2: 0.8355
23 w2 05:0.6652 07:0.6762 057:1.0 13 w2 03:0.1116 604:0.9936 634:0.9948
24 u2 67:0.6762 0s: 0.6652 075: 1.0 14 u2 63:0.1116 0g: 0.2522 636: 0.2567
25 u2 0s:0.6636 07:0.6762 fe7: 1.0 15 u2 64:0.9936 0g: 0.2522 O46: 0.995
26 u2 67:0.6762 0s: 0.6636 076: 1.0 16 u2 06:0.2522 04: 0.9936 064: 0.995
27 n3 05:0.5487 0s:0.5471 0s6: 0.6605 17 n3 63: 0.07 62:0.8059 632: 0.07
28 us 06:0.5471 0s5:0.5487 0Og5: 0.6605 18 ua 63: 0.0698 02:0.237 632: 0.0698
29 us 05:0.5487 07:0.5597 657: 0.6605 D A 19 na 02:0.237 64:1.0 024: 1.0
30 u3 67:0.5597 0s:0.5487 675 0.6605 20 na 64:1.0 02:0.237 042: 1.0
31 u3 06:0.5471 07:0.5597 6Og7: 0.6605 21 na 02:0.237 0s: 0.261 626 0.2851
32 u3 67:0.5597 0e: 05471 676: 0.6605 22 na 0s: 0.261 02:0.237 f62: 0.9999
33 na 05:0.1115 0e: 0.1115 6s56: 0.1115 23 na 63: 0.0698 64: 1.0 034: 1.0
34 na 06:0.1115 65:0.1115 Hes: 0.1115 24 na 63:0.0698 0s: 0.261 636 0.2559
35 na 05:0.1115 607:0.1115 6s57: 0.1115 25 na 04:1.0 0s: 0.261 046: 1.0
36 na 67:0.1115 6s5:0.1115 675: 0.1115 26 na 0s: 0.261 64: 1.0 0e4: 1.0
37 na 06:0.1115 67:0.1115 Hg7: 0.1115 27 us 03:0.214 62:0.9984 032:0.214
38 na 67:0.1115 0s:0.1115 076:0.1115 28 ue 63:0.068 62:0.2307 632: 0.068
1 n1 61:0.9996 02:1.0 612: 0.9996 29 ue 62:0.2307 04:0.9735 624:0.9753
2 u1 02:1.0 61:0.9996 021:0.9997 30 ue 04:0.9735 02:0.2307 642: 0.9753
3 u2 01:1.0 04:1.0 014: 1.0 31 ue 02:0.2307 0s: 0.2704 626: 0.2809
4 u2 04:1.0 01:1.0 041:1.0 32 ue 06:0.2704 02:0.2307 662: 0.2891
5 u2 01:1.0 0s: 1.0 016: 1.0 33 ue 03: 0.068 04:0.9735 034:0.9748
6 n2 0s: 1.0 01:1.0 061: 1.0 34 e 03: 0.068 0s: 0.2704 036: 0.267
7 n2 04:1.0 0s: 1.0 046: 1.0 35 e 04:09735 0s: 0.2704 046 0.986
N 8 n2 0s: 1.0 04:1.0 064: 1.0 36 ne 06:0.2704 04: 0.9735 064 0.986
9 u3 01:1.0 0s5:1.0 015: 1.0 37 ore) 03:0.214 62:1.0 032:0.214
10 u3 0s5:1.0 01:1.0 051:1.0 38 110 03:0.0753 602:0.6398 632:0.0753
11 u3 f1:1.0 67:1.0 017: 1.0 1 u3 0,:0.0032 03:0.4465 013:0.4413
12 u3 07:1.0 f1:1.0 671: 1.0 2 u3 63:0.4465 01:0.0032 031:0.4479
13 n3 0s:1.0 67:1.0 0s57: 1.0 K 3 ne 61:0.0022 02:0.9401 012:0.9454
14 n3 07:1.0 0s: 1.0 675: 1.0 4 1e 62:0.9401 07:0.0022 021:0.9418
15 ua 61:0.9962 0s5:0.9969 615: 0.9969 5 uo 61:0.0013 602:0.0995 612:0.1024
16 ua 05:0.9969 01:0.9962 651:0.9962 6 uo 62:0.0995 01:0.0013 621:0.1022

search engines. We caution readers that this observation is
based on the MRs reported in the literature. To date, only a
relatively small set of MRs for compilers have been studied,
and they all involve equality relations between source and
follow-up outputs. This makes the guideline applicable to
most of these MRs. Due to the nature of numeric and scien-
tific application domains, the input and output mappings of
the reported MRs are often composable and bijective, and
therefore the guideline is also mostly applicable to these
domains. Furthermore, image processing and autonomous
driving systems are currently the main Al systems using

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOG

MT. Most of the MRs defined for these systems are based on
spatial transformation mappings that are composable and
bijective, resulting in the applicability of the guideline in
these domains. On the other hand, the reported MRs for
biomedical applications, web services, embedded systems
and online search engines often involve subset or substring
relations, which are less likely to have bijective input and
output mappings. The guideline, therefore, is less applicable
to such systems. However, we also wish to highlight that
this observation may vary as more MRs emerge.

rublication/redistribution requires IEE]%{permission. See http://www.ieeeorgépublicationsﬁstandards/publications/ri%hts/indexhtml for more information.
. Downloaded on March 13,2

2 at 10:53:20 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 15
TABLE 6: Applicability of the Guideline
No. of No. of MRs No. of MRs whose Answer Answer

Application Domains References Identified complying I is bijective and o o

o MRs with Def. O is injective t0 Q1 (%) to Q2 (%)
Biomedical applications 161, 171, [8] 42 12 12 28.57 100.00
Web services [9], [10] 9 3 3 33.33 100.00
Embedded systems [11], [12] 3 0 0 0.00 0.00
Component-based software [13] 3 2 2 66.67 100.00
Compilers [14], [15], [16] 8 8 5 100.00 62.50
Machine learning classifiers [171, [18], [19], [201], [21] 16 7 7 43.75 100.00
Online search engines [22], [23], [24] 9 0 0 0.00 0.00
Assorted computer science algo- 331, [34], [35] 27 16 1 5926 68.75
rithms
Numerical and scientific programs [301, [36] 17 14 14 82.35 100.00
Al systems (e.g., image processing . . 3 .
and autonomous car systems) [25], [26], [27], [28] 30 28 28 93.33 100.00
Total 164 90 82 54.88 91.11

6.3 Related Work

Two major challenges for MT are: (a) identification of MRs;
and (b) additional computations of the program executions
for follow-up test cases. Although MR composition can ad-
dress both challenges, only few papers primarily focused on
the effectiveness of MR composition — we found only two
papers [30], [31] in this area. Obviously, MR composition
reduces the number of program executions and, hence, low-
ers the computation costs — this is indisputable. However,
these two studies on MR composition [30], [31] do not have
a consensus on whether or not the fault detection capability
after composition will be jeopardized. Furthermore, both
studies [30], [31] adopted a purely empirical approach.
Therefore, their observations could not provide a full picture
of this issue and are dependent on the subjects being in-
vestigated. Understandably, some of their observations may
look contradictory, that is, they reach different conclusions
on the fault detection effectiveness of the composite MRs.
On the other hand, with our theoretical results, such illusive
contradictions are clarified. In summary, their results [30],
[31] motivated our study, which in turn provides a more
comprehensive interpretation of their results.

MR composition is an obvious and straightforward
method to generate new MRs that is easily implemented and
automated. However, this method requires the existence
of some MRs for generation of new ones. Recently, with
the increasing recognition and acceptance of MT by the
software testing community, a growing number of research
studies on MR generation/identification has emerged. Ex-
amples of these studies include machine-learning-based
techniques [39], [40], [41], search-based techniques [42],
[43], data-mutation-based techniques [26]], [44], [45], pattern-
based techniques [46], [47], and the category-choice ap-
proach [48], [49]. Since the main focus of this paper is not on
MR generation, comparing our work with the above studies
is beyond the scope of this paper.

7 SUMMARY AND CONCLUSION

Two major advantages of MR composition are the facili-
tation of automatic MR generation, and the reduction in
testing costs (by reducing the number of program executions
for follow-up test cases). However, MR composition has a

Authorized licensed use limited to: HEFEFUNIVERSITY OF TECHNOLOG

ublication/redistribution requires IEE]%{permission. See http://www.ieee.or|
. Downl

potential drawback: The fault detection capability of the
composite MR may be lower than that of its component
MRs, jeopardizing the overall effectiveness of MT. This issue
motivated us to perform theoretical and empirical analyses,
with a goal of identifying characteristics that the component
MRs should possess so that the fault detection capability of
the generated composite MR will likely not be less than that
of its component MRs. In short, given a pair of metamorphic
relations MR, and MR@: that belong to the special class
defined in Definition where MR, is composable with
MR » they should be used to form a composite MR% if both
the following conditions are met: (a) the output mapping of
MR, is injective; and (b) the input mapping of MRT is a
bijective mapping from the source inputs of MR@ to the
source inputs of MR,. This result is produced based on
Theorems 1 to 4, Propositions 1 and 2, and the empirical
analysis discussed in the paper. This result provides a solid
foundation for MT and has paved a path for future studies
on MR composition.

Based on our theoretical and empirical analyses, a conve-
nient yet effective general guideline on MR composition has
been developed. We further performed studies (by using a
sample of MRs extracted from previously published works
on MT) to confirm the applicability of the guideline across a
range of application domains.

Our study has focused on a special class of MRs, as
stated in Definition [1] Although this class of MRs is com-
mon, it would be worthwhile to extend our study to ex-
amine MRs that are outside this class. A hierarchy of com-
posable MRs and their composite MRs could then be built. It
would be interesting to investigate what further information
and insights could be exploited from this hierarchy, using
the theoretical results reported in this paper. This future
study would enhance the foundation of MT research. An-
other potentially fruitful direction is a large-scale empirical
analysis of the relationships among 0,. , minf6,, 0 g, and
maztl,, Hl,g. The results of this empirical analysis would
help practitioners better estimate their testing costs.

ACKNOWLEDGMENTS

We are indebted to Dr. Dave Towey of the University of
Nottingham Ningbo China for his valuable comments and

/publications_standards/publications/ri; r
oaded on March 13,2§2P2 at 10:53:20 UTC from IEEE Xp%ore. Restrictions apply.

hts/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

suggestions on improving this paper. This work was sup-
ported in part by the National Natural Science Foundation
of China (Grant Nos. 61772055 and 61872169), the Technical
Foundation Project of Ministry of Industry and Information
Technology of China (Grant No. JSZL2016601B003), and

the

No.

Equipment Preliminary R&D Project of China (Grant
41402020102).

REFERENCES

[1]
[2
(31

(4]

[5]

(6]

[71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

0098-5589 (c) 2020 IEEE. Personal use is permitted, but re
Authorized licensed use limited to: HEFE

iofﬁware: A metamorphic testinghrpetk;pdology," in

P. Ammann and J. Offutt, I "iroa”‘utb " Sofugfre esw' g New
York, NY: Cambridge University Press, 2018. ‘
M. Pezzé and My, Young, Sefagyfre essr*s¢ % A #lysis

ri#ples ¥ W e 'fy es. Noida, India: Wiley, 2007.

.T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE ¥ Sk-mo %0 *
sefaykre E ¥g ®ers "y vol. 41, no. 5, pp. 507-525, 2015.

T.Y. Chen, S.C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Hong Kong Uni-
versity of Science and Technology, Hong Kong, Technical Report
HKUST-CS98-01, 1998.

F.T. Chan, T.Y. Chen, S.C. Cheung, M.F. Lau, and S.M. Yiu,
“Application of, metamorphic testing in numerical analysis,” in
I.ro'ccit' *sof e lA ED I 'ter tmo #1 Co fere *e 0 "Sofuytre E *g

Ber: *§ SE §8), 1998; pp. 191-197.

T.Y.Chen, J. W.K. Ho, H. Liu, and X. Xie, “An innovative approach
for testing biirginformatics programs using metamorphic testing,”
BM.C Buo: for #m#s, vol. 10, no. 1, 2009, Article no. 24.

L.L. Pullum and O. Ozmen, “Early results from metamorphic
testing of epidemiological models,” ir}lq.r#'eea’[*s q‘Avg.l:’mIEEE IR
w2r ‘taro #1 Co Jere #e o *BioM edi7t] Co"p' ur' *§ BioW e4Co), 2012,
pp. 62-67.

M. S. Sadi, F.-C. Kuo, J. W.K. Ho, M. A. Charleston, and T. Y. Chen,
“Verification of gﬁylogenetic infigalrence progre};’nsrusing metamor-
phic testing,” Jo' r #1 of Bio: for fuss & 4 Co p sfuro #1 Buwlo g,
vol. 9, no. 6, pp. 729-747, 2011.

W.K. Chan, S.C. Cheung, and K.R.P. Leung, “A metamorphic
testing approach for online ,;esting of gervice-oriented;ﬁoftware
applications,” I ter tato #1Jo" r #lof e “Servires Resetre (I <R),
vol. 4, no. 2, pp. 61-81, 2007. W : W
C.-A. Sun, G. Wang, B. Mu, H. Liu, Z.S. Wang, and T.Y. Chen,
“Metamorphic testing f%r web services: Framework and a case
study,” in preseed: *§ of © 11 IEEE 1 'er #uato #1 Co fere #e 0 * e
Servives, Zd.lL pp. 283-290. W
W.K. Chan, T.Y. Chen, H. Lu, T.H. Tse, and S.S. Yau, “Integra-
tion testing of context-sensitive middlewrgre-based applications: A
metamorphic approach,” I ler #xo #1 Jo' r #1 of Sofgykre E g ter
("¢ WK byled g E *g eri *gvol. 16, no. 5, pp. 677-703, 2006.
F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded software
by metamorphic testing: A wireless meterilrlllg §ystem case study,”
in].m'zza’t' g q'3 & Co fcre we o *Loskl Co p' wr el;orks, 2011,
pp. 291-294.

X.-L. Lu, Y.-W. Dong, and C. Luo, “Testing of component-based
are: A metamorphi thedology.” in proverfi 15 of
w Ligy tuo] Co fere #e o * iq g s 'iellzg’fz&‘Cﬂl p,JlI"
£ [ter tuo #1 Co fere el A" w " 7 &, 1rsedCop o
2010, pp. 272-276. !
V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM ';[GI.LA onrzes, vol. 49, no. 6, pp. 216—
226, 2014. ’

Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing
approach for conboiler based on metamorphic testing technique,”
in groceedi g of = 1 Asik].l";ﬁ’ sofuykre E ¥y teri 3Co fere e,
20{0, pp. 270-279.

A.F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Auto-
mated tes"g;lr}g of grappics shader compilers,” in].m’cci[' *gof AOM
0 *oro o #sLk *¥ gs, 2017, Article no. 93.

C. Murphy, G.E. Kaiser, and L. Hu, “Properties of machine
learning applications for use in metamorphic testing,” Columbia
University, U.S., Technical Report CUCS-011-08, 2011.

X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T.Y. Chen,
“Application of gpetamorphic testing to superyised classifiers,” in

roseedi *g of 9w [ier #uro #1 Co fere e 0 * ®kliay Sofaytre, 2009,
]Bp. 135-144.

]. roress

¥ Q9

L

[+

UNIVERSITY OF TECHNOLOG

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

16

X. Xie, J.W.K. Ho, C. Murphy, G. Kaiser, B. Xu, and T.Y. Chen,
“Testing and valjgating mach;lne learning classifiers by metamor-
phic testing,” Jo' r #1 of $ysee” s ¥ W sofaytre, vol. 84, no. 4, pp.
544-558, 2011.
S. Nakajima and H. N. Bui, “Dataset coverage for}esting machine
learning computer programs,” in sreceedi *g of “3rd Asik].f’lﬁf
Sofiykre £ Py eri ¥3Co fere e, ZOlE, pp. 297-304.
P. Saha and U. Kanewala, “Fault detection effectiveness of meta-
morphic relations developed for testing supervised classifiers,” in
fro'ccit' *g of IEEE | "ter #uo #1 Co fere e 0 *Armfirik] I elli g e
nesar *4 Al ess), 2019, pp. 157-164.
‘Z.Q. Zhou, S. Zhang, M. Hagenbuchner, T.H. Tse, F.-C. Kuo,
and T.Y. Chen, “Automated functional testing, of online search
services,” Sofugfre eswr g\ erifickao "¢ W Relik iy, vol. 22, no. 4,
pp. 221-243, 2012.¢ ’
Z.Q. Zhou, S. Xiang, and T.Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” IEEE
~TF Bkemo 5 o P Sofupfre E Py eri *g vol. 42, no. 3, pp. 264-284,
‘2015.
J. Brown, Z.Q. Zhou, and Y.-W. Chow, “Metamorphic testing of
navigation software: A pilot study with Google n}ﬁlps," in grozees
[*g of 5 1swHF gt 1i' ['er turo %1 Co Jere e o Pqysme Geie Wes, 2018,
pp. 5687-5696.
J. Mayer and R. Guderlei, “On randorp testing of image process-
irg applications,” in].ro'eedz‘ *sof g ['iler #uro #1 Co fere #e 0
¥liy sefaysre, 2006, pp. 85-92.
H. Zhu, D. Liu, I. Bayley, R. Harrison, and F. Cuzzolin, “Data-
morphic testing: A method for testing intelligent applications,” in
I.ro'eta’t' *g of IEEE I 'er #uto #1 Co fere e 0 *Arnfirik] I ell; g *e
esar *§ Al esw), 2019, pp. 149-156.

Fal

‘M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deep-

Road: GAN-based metamorphic testing and input validation

framework for autonomous driving system;,,;'”in I.ro’eeiz' ’s of

33rd ACM IEEE I ‘ter #umo #] Co fere e 0 *A' w fwed Sofuyfre E *

& teri #52018, pp. 132-142.

Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing

of deep-neural-network-driven autonomous cars,” in l.mfcciz‘ *g

of 4 v ['ler tuo #1 Co fere e o * Sofuykre E g teri *g 2018, pp.

303-314.

Z.” ;,%POU and L. Spin, “Metamorphic testing of driverless cars,”

Co fekuo % of we ACM, vol. 62, no. 3, pp. 61-67, 2019.

G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Case ﬁtudies

on,,teﬁting with compositional metamorphic relations,” Jo' r #1 of

o' wekse Mversiy (E "5 Ediro ¥, vol. 24, no. 4, pp. 437-443,

2008. Y

H. Liu, X. Liu, and T.Y. Chen, “A new mftmod for constructing

metamorphic relations,” in proseed: *§ of 17w [ier #uro #1 Co fer

e *eo * ®tliy Sofuysre, 2012, pp. 59-68.

B.H. Smith and L. Williams, “On guiding the augmentation of

an automated test suite via mutation analysis,” ﬁ”pz‘rz'ftl Sofwykre

E *g teri "3 vol. 14, no. 3, pp. 341-369, 2009.

M. Jiang, T.Y. Chen, F.-C. Kuo, and Z. Ding, “Testing central pro-

cessing unit schedyling algorithms using metamorphic testing,”

in wroceed: *5 of 4u> [ler #uro #] Co fere e o *Sofagtre E *g teri g

4 ‘gf.em're Srie e, 2013, pp. 530-536.

P. Rao, Z. Zheng, T.Y. Chen, N. Wang, and K. Cai, “Impacts of test

suite’s class imbalance on spegtrum-based fault localization gech-

niques,” in proseed: *g of 13e~ [ler tuo #1 Co fere #e 0 * ®fliy

Sofaykre, 20!3, pp. 260-267.

X. Xie, W.E. Wong, T.Y. Chen, and B. Xu, “Metamorph]ilclz slice: An

application jp spectrum-based fault localization,” I for fwo ¢ 4

Sefuykre e blo y, vol. 55, no. 5, pp. 866-879, 2013.

T.Y. Chén, J. Feng, and T.H. Tse, “Metamorphic testing of pro-

grams ?n partia} differential equa};clio%: A case study,” in srosees
g A PPEL] er tao #1Co p'ower Sofuykre k ' App lickaro 8,

2002, pp. 327-333.

S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey

on metamorphic testing,” IEEE 1 %f-so % o0 " Sofigykre E g ter

i *svol. 42, no. 9, pp. 805-824, 2016.

T.Y. Chen, F-C. Kuo, H. Liu, P-L. Poon, D. Towey, T.H. Tse, and

Z.Q. Zhou, “Metamorp,nic’;esting", A review of challenges and

opportunities,” ACM Co p &' *3< rveys, vol. 51, no. 1, article 4,

pp. 1-27, 2018.

U. Kanewala and J. M. Bieman, “Using machine learning tech-

niques to detect metamorphic relati0|}s for programs Wit]r)]out t,g,s]t

oracles,” in .rofe;a'z‘ ¥g of < 13 IEEE “4w ["ter furo #1 Sy Pos:

o "Sofaykre Relik iy E Py er 74 Iss'.}kE), 2013, pp. 1-10.

rublication/redistribution requires IEE]%{permission. See http://www.ieeeorgépublicationsﬁstandards/publications/ri%hts/indexhtml for more information.
. Downloaded on March 13,2

2 at 10:53:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3009698, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017

[40] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamor-

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

0098-55844

phic relations for testing scientific software: A machine learning
approgch using graph kernels,” sofayfre _esar s \erifickmo *§ 1§
Relik ildwy, vol. 26, no. 3, pp. 245-269, 2016
A. Nair, K. Meinke, and S. Eldh, “Leveraging mutants for auto-
matic prediction of metamorphic relations using machine lgarn-
ing,”jin I.roreeiz' *s q‘ﬁri’ACM SIGSOF,, ['ter ‘taro #]
Mkr ¥ Lekr ' *g e M es for sofuyire Cfliay EL'HM"-I&) #2019,
pp. 1-6. :
J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based, infgrence of polynomial metamorphic relat7ipr;1]§," in
].ro’eea’t' *g of “90° ACM IEEE | "ter #uato #1 Co fere %e o "A w0 fwg
Sofuykre E Py teri *g 2014, pp. 701-712.
B. Zhang, H. Zhang, J. Chen, D. Hao, and P. Moscato, “Automatic
discovery and cleansing of numerical metamorphic relations,” in
ro’eea’t','j,;s of IEEE ["er #ato #1 Co fere e o "Sofugykre Mt e 't We
"% Evel w0 't ICYW E), 2019, pp. 235-245.
H. Zhu, “JFuzz: A tool for automated Java unit testing based on
dat? mutation and metamorphic testiypg methods,” In sroceedi f'g
W [er #umo #1 Co fere #e 0 * 1 siyorey Syse s £ e
App lirswrp 8, 2015, pp. 8-15. ! !
C.-A. Sun, Y. Liu, Z. Wang, and W.K. Chan, “uMT: A data mu-
tation directed meztamorphic relation acquisition methodojogy,”
in sroceesy®s of © 14 IEEE ACK 1se] fler #umo #1
MW" op 1 _esw *§ME,), 2016, pp. 12-18. W
S. Segura, J/A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamor-
phic testing of RESTful web APIs,” IEEE 1§ % -ato 8 o " <$ofuykre
E *g ®eri *gvol. 44, no. 11, pp. 1083-1099,°2017.
Z.Q. Zhou, L. Sun, T.Y. Chen, and D. Towey, “Metamorphic rela-
tions for enhancing system understanding and use,” IEEE 1 %~
o o "Sofuyfre E *g #ers g 2018. doi: 10.1109/TSE.2018.2876433.
T.Y. Chen, P.-L. Poon, and X. Xie, “METRIC: Metamorphic r{glation
idenltli,fication based on the category-choice framework,” Jo' r #1 of
Syse sk W Sefugkre, vol. 116, pp. 177-190, 2016.
C.-A. Sun, A. Fu, P-L. Poon, X. Xie, H. Liu, and T.Y. Chen,
“METRIC™: A metamorphic relation identification technique
based on input plus output domains,” IEEE 1 ¢ sst0 % 0 *Sofa
#fre E 75 ®eri *3(in press). ‘

Kun Qiu received his B.S. in Automation from
the Hefei University of Technology, Hefei, China,
in 2013. He is currently a Ph.D candidate in the
School of Automation Science and Electrical En-
6 gineering at Beihang University, Beijing, China.
& His research interests include software testing
and software reliability analysis.

Zheng Zheng (SM’ 18) received his Ph.D de-
gree in computer software and theory from the
Chinese Academy of Science, Beijing, China. In
2014, he worked as a research scholar in the De-
partment of Electrical and Computer Engineer-
ing at Duke University, Durham, North Carolina,
USA. He is currently a Professor at Beihang Uni-
versity, Beijing, China. His research interests in-
clude software dependability modeling, software
testing, and software fault localization.

Tsong Yueh Chen (M’ 03) received his Ph.D
degree from The University of Melbourne. He is
currently a Professor of Software Engineering at
Swinburne University of Technology, Australia.
Prior to joining Swinburne, he taught at The
University of Hong Kong and The University of
Melbourne. He is the inventor of metamorphic
testing and adaptive random testing.

®se limited to: HEFEI UNIVERSITY OF TECHNOLOG

orks @ o *

oks o *

use is permitted, but rerublication/redistribution requires IEEEYpermission. See http://www.ieeeorgép
. Downloaded on March 13,2

17

Pak-Lok Poon (M’ 01) received his Ph.D de-
gree in software engineering from The Univer-
sity of Melbourne. He is an Associate Professor
with the School of Engineering and Technol-
ogy, Central Queensland University, Australia.
His research interests include software testing,
requirements engineering and inspection, elec-
tronic commerce, and computers in education.
He was a guest editor of the special issue of the
Journal of Systems and Software on test oracles
in 2018, and will be a guest editor of the special

issue of the same journal on metamorphic testing in 2021. He was
also an organizer for the 3rd, 4th, and 5th International Workshops on
Metamorphic Testing in 2018, 2019, and 2020, respectively.

ublications_standards/publications/rights/index.html for more information.
2 at 10:53:20 UTC from IEEE Xp%

ore. Restrictions apply.

